
Runtime Stealthy Perception Attacks against DNN-based
Adaptive Cruise Control Systems

Xugui Zhou
xuguizhou@lsu.edu

Louisiana State University, USA

Anqi Chen
chen.anqi3@northeastern.edu
Northeastern University, USA

Maxfield Kouzel
Haotian Ren

University of Virginia, USA

Morgan McCarty
morgannmccarty@gmail.com
Northeastern University, USA

Cristina Nita-Rotaru
c.nitarotaru@northeastern.edu
Northeastern University, USA

Homa Alemzadeh
ha4d@virginia.edu

University of Virginia, USA

Abstract
Adaptive Cruise Control (ACC) is a widely used driver assistance
technology for maintaining desired speed and safe distance to the
leading vehicle. This paper evaluates the security of the deep neu-
ral network (DNN) based ACC systems under runtime stealthy
perception attacks that strategically inject perturbations into cam-
era data to cause forward collisions. We present a context-aware
strategy for the selection of the most critical times for triggering
the attacks and a novel optimization-based method for the adap-
tive generation of image perturbations at runtime. We evaluate
the effectiveness of the proposed attack using an actual vehicle, a
publicly available driving dataset, and a realistic simulation plat-
form with the control software from a production ACC system, a
physical-world driving simulator, and interventions by the human
driver and safety features such as Advanced Emergency Braking
System (AEBS). Experimental results show that the proposed attack
achieves 142.9 times higher success rate in causing hazards and
82.6% higher evasion rate than baselines, while being stealthy and
robust to real-world factors and dynamic changes in the environ-
ment. This study highlights the role of human drivers and basic
safety mechanisms in preventing attacks.

CCS Concepts
• Computer systems organization → Embedded and cyber-
physical systems; • Security and privacy → Systems security.

Keywords
Runtime Attack, Safety Intervention, AEBS, ADAS, ACC, DNN,
Perception Attack, Stealthy.

ACM Reference Format:
Xugui Zhou, Anqi Chen, Maxfield Kouzel, Haotian Ren, Morgan McCarty,
Cristina Nita-Rotaru, and Homa Alemzadeh. 2025. Runtime Stealthy Percep-
tion Attacks against DNN-based Adaptive Cruise Control Systems . In ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’25),
August 25–29, 2025, Hanoi, Vietnam. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3708821.3710832

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1410-8/25/08
https://doi.org/10.1145/3708821.3710832

1 Introduction
Level-2 Advanced Driver Assistance Systems (ADAS) provide au-
tonomous driving features while still requiring human attention
at all times [1]. Examples include Adaptive Cruise Control (ACC)
which controls longitudinal movement, Automatic Lane Centering
(ALC) which controls lateral movement, and Advanced Emergency
Braking System (AEBS) which controls braking through Automatic
Emergency Braking (AEB) and provides warnings through For-
ward Collision Warning (FCW). Over 17 million passenger cars
worldwide are equipped with ADAS [2].

One important ADAS feature is ACC, which makes highway
driving more comfortable by automatically changing the speed
when traffic slows down or speeds up. ACC takes as input sensor
measurements such as radar, Lidar, or camera and adjusts the speed
to maintain a safe following distance to the lead vehicle [3, 4]. At
the core of ACC lies the detection and tracking of the lead vehicle.
Highly accurate methods [5, 6] for detection and tracking rely on
Deep Learning (DL) based object detection using camera or fusion
of camera and radar/Lidar data. A Longitudinal planner (LP) uses
the prediction from the DL module to compute the desired speed
and acceleration. Malfunctioning of the object detectionmodule can
have serious consequences including accidents. Given the critical
role of object detection and tracking in the safety of ACC and that
many commercial ACC systems (e.g., Tesla Autopilot [7], Comma.ai
OpenPilot [8]) use DL-based object detection, these mechanisms
must function correctly under any conditions, including in the
presence of adversaries.

Previous work has shown attacks against Deep Neural Networks
(DNN) used for perception such as adversarial perturbations [9],
adversarial patches [10–12] or well-crafted stickers on road signs
[13], the road [14], or camera lenses [15] to change the predicted
class or probability of detecting a target object or the lane lines.
However, misprediction of the lane lines only affects the lateral
control (ALC) and simply changing the lead object class or detection
probability does not necessarily impact the LP enough to cause
unsafe ACC behavior (e.g., sudden acceleration). Attacking DNN-
based ACC systems necessitates influencing the relative distance
and speed with respect to the lead vehicle. One such attack using
physical adversarial patches to control the relative distance and
speed to the lead vehicle was shown against a production ACC [16].
However, the attack required placing a conspicuous large patch
on the back of a truck and driving the truck in front of the target
vehicle, a method easily noticeable or preventable by human drivers
(see Appendix D).

ar
X

iv
:2

30
7.

08
93

9v
4

 [
cs

.C
R

]
 2

 J
an

 2
02

5

https://orcid.org/0000-0002-3663-7447
https://doi.org/10.1145/3708821.3710832
https://doi.org/10.1145/3708821.3710832

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

In terms of computational effort, the perturbation-based attacks
described above predominantly rely on offline optimizations. For
attacks on ACC to be effective and robust, perturbations must be
created at runtime by considering dynamic factors such as the lead
vehicle’s size and position across consecutive camera frames, inter-
dependencies across the frames, and environmental changes, while
satisfying runtime computation constraints.

Notably, previous work ignored the presence of safety interven-
tions in the ADAS control loop. Although some attack works have
considered AEB or FCW, they either do not apply to ACC [12]
or directly change the state estimations [17]. Some recent works
[18, 19] have used the system context to determine the optimum
time for attack injection. However, they did not directly compute
the perturbations for the DL perception module to affect relative
speed and distance and could be easily detected by existing safety
mechanisms or anomaly detection methods [20, 21].

To fill these gaps, in this paper, we focus on runtime stealthy
attacks against DNN-based ACC systems that inject minimal image
perturbations into the DNN input with the goal of causing ACC
controller to issue unsafe acceleration commands that cannot be
mitigated by the human driver or existing safety mechanisms and
lead to safety hazards, such as forward collision.We assume baseline
ACC, ADAS software, and existing safety mechanisms are trusted.

Designing stealthy safety-critical attacks in the human-in-the-
loop ADAS is a challenging task as the attackers need to explore the
extensive attack parameter space to devise a strategy for effectively
manipulating the DNN inputs and causing unsafe driving behavior
while considering the dynamic changes of the environment at run-
time, real-time constraints, and safety interventions. We propose
a context-aware attack strategy and optimization method together
with a safety intervention simulator to explore key questions on
how the timing and value of perturbations affect the success of
attacks in (1) causing safety hazards and (2) evading human driver
or safety mechanism detection and intervention. To the best of our
knowledge, this is the first evaluation of the security of DNN-based
production ACC systems under runtime strategic attacks using a
combined knowledge-and-data-driven approach by taking into ac-
count human drivers and realistic safety mechanisms. This study
provides insights into the vulnerabilities and risks associated with
DNN-based ACC systems and the role of human operators and
safety mechanisms in preventing attacks.

The main contributions of the paper are the following:
• We adopt a control-theoretic hazard analysis method to iden-
tify the most critical system contexts for launching attacks
that maximize the chance of forward collisions.

• We design a novel optimization-based approach and an adap-
tive algorithm to generate stealthy image perturbations and
add them in the form of an adversarial patch to the input
camera frames at runtime to fool DNN model and cause un-
safe acceleration by ACC controller before being detected or
mitigated by the human driver or ADAS safety mechanisms.

• We evaluate the effectiveness of the attacks with a real vehi-
cle and driving dataset and a realistic simulation platform
that integrates an open-source ADAS control software, Open-
Pilot from Comma.ai (with over 10,000 active users on the
road) [8] and the state-of-the-art physical-world driving sim-
ulator, CARLA, with a driver reaction simulator and the

typical ADAS safety mechanisms (AEB and FCW), which we
implement based on the international standards.

• Experimental results show that our context-aware attack
strategy causes 28.6x more hazards than random attacks.
The proposed optimization-based perturbation algorithm
achieves a 100% attack success rate in four high-risk driv-
ing scenarios (in the absence of safety interventions), 142.9x
and 1.9x higher than random value perturbation and APGD-
based methods [22]. Our approach is also stealthy and robust
to real-world factors such as different camera positions, dis-
tances to lead vehicle, and weather and lighting conditions.

• We observe similar results in the presence of the human
driver and safety feature interventions, where our attack
still achieves an 82.6% success rate, while all the random and
APGD-based attacks are mitigated by the safety mechanisms.

Ethics.We have submitted responsible disclosures to Comma.ai.
For the human subject study, we received IRB approval and fol-
lowed the IRB requirements for the recruitment of participants and
conduct of experiments.

2 ADAS Overview
Fig. 1 shows the overall structure of a typical ADAS, including ACC,
AEBS, and ALC features.

2.1 Adaptive Cruise Control (ACC)
The main goal of ACC is to maintain a safe following distance
between the autonomous vehicle (referred to as Ego vehicle or AV)
and the vehicle driving in the same lane in front of the AV (referred
to as lead vehicle or LV) by adjusting the AV speed based on the
estimated relative distance and relative speed to the LV.

Sensors. Existing DNN-based ACC systems either use camera
data (e.g., Tesla Autopilot, Subaru Eyesight) or both camera and
radar data (e.g., Apollo [23] and OpenPilot) to predict and track LVs
and objects. Other sensors, such as GPS or IMU, are also used to
detect current speed to match the target speed set by the drivers.

Lead Vehicle Detection. The most critical part of ACC is lead
vehicle detection (LVD), which estimates the relative speed (𝑅𝑆) and
distance (𝑅𝐷) to the LV using camera data or a fusion of camera
and radar data. Sensor fusion is the process of combining mea-
surements from multiple sensors (e.g., camera and radar) usually
using a Kalman filter [24] to overcome the limitations of individual
sensors and obtain a more accurate perception of the surrounding
environment. Based on the LVD outputs, the main driving control
actions (i.e., acceleration, deceleration, braking) are determined.

38

DNN

Ve
hi

cle
M

ec
ha

ni
ca

l
Co

m
po

ne
nt

s
Ac

tu
at

or
s

Se
ns

or
s

Ra
da

r
Ca

m
er

a(
s) Lead Vehicle/

Lane Detection

Longitudinal
Planner

AEBS (AEB, FCW)

Sensor
Fusion

GP
S/

IM
U

Lateral
Planner

PID

PID
Steering

Human Driver

Lane
Lines

ACC
Accel.
Decel.

Left
Right

ALC

!!
Throttle
Brake

ADAS Brake

Human
Control

…

Sensor Measurements

AV Velocity !!"#!

Warning
Messages

Rel. Dist. !"!
Rel. Spd. !#!

"$

Figure 1: ADAS architecture with ACC, AEBS, and ALC.

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Table 1: Comparison of attacks on DNN-based ADAS.
Attack Attack Safety Interventions Autonomy

Method Type Vector Target AEBS Driver Level[1]

[13]

Offline

Stickers on road signs Classifier N N N/A
[27] Patch projected MTO N N L4
[14] Stickers on road ALC N N L2
[16] Patch on truck ACC N N L2
[12] Patch on road ALC Y N L2

[28]

Runtime

Perception inputs MTO N N L4
[19] Perception inputs MTO No FCW N L4
[17] Inner state variables FCW No AEB Y N/A
[18] Control commands ACC, ALC No AEB Y L2
Ours Perception inputs ACC Y Y L2
* MTO: Multi-Object Tracking;

Longitudinal Planner. The next stage involves determining the
optimal speed based on the LVD outputs and current vehicle state.
The longitudinal planner uses algorithms such as Model Predictive
Control (MPC) to generate multiple desired speed trajectories, each
representing a series of speeds in a certain following period [25].

Vehicle Control. At each control cycle 𝑡 , the plan from the
longitudinal planner with the lowest speed and risk (e.g., risk of
colliding with the LV) is selected by the ACC system and fed to
a Propotional-Integral-Derivative (PID) [26] controller to get the
specific optimal control command 𝑢𝑡 in the form of the throttle or
brake amount such that the vehicle accurately and quickly follows
the desired speed trajectory. Upon execution of the control com-
mand by the actuators, the vehicle’s physical state, 𝑠𝑡 (e.g., current
speed, location), transitions to a new state 𝑠𝑡+1.

2.2 ADAS Safety Mechanisms
The Advanced Emergency Braking System (AEBS), including FCW
and AEB, is a fundamental ADAS safety mechanism that alerts
drivers about potential collision risks with a lead obstacle and ac-
tively decelerates the vehicle to prevent accidents. As shown in Fig.
1, most AEBS implementations utilize both camera and radar for
collision prediction through sensor fusion [29] and make control
actions based on the LVD outputs and other sensor measurements
(see Appendix C). In addition, some safety principles (such as max-
imum acceleration limits as required by international standards,
e.g., ISO 22179) or firmware safety checks (e.g., constraints on the
output steering angle) are incorporated into the design of typical
production ADAS to ensure driving safety [30].

Previous studies on security of autonmous driving either focus
on Level 4 or fully autonomous vehicles without considering the
impact of the human driver interventions during an emergency
situation (e.g., abnormal acceleration) or have overlooked the in-
clusion of basic safety features like AEB or FCW and their impact
on the attack effectiveness (see Table 1). For a realistic assessment
of ACC security, it is essential to evaluate the interventions of
these safety features. At Level 2, drivers must maintain control and
supervise ADAS functionalities [1]. There exists a research gap
concerning how to make the combination of a human driver and
an autonomous vehicle acceptably safe. The primary challenge lies
in assessing the ability of human drivers to anticipate and respond
to situations where automation may fail.

2.3 OpenPilot
We use a production ADAS called OpenPilot from Comma.ai [8] as
our case study. OpenPilot is the only open-source production Level-
2 ADAS, designed with the goal of improving visual perception

and automated control (with ACC and ALC) through installing
custom hardware to the OBD-II port on a vehicle. The targeted
ACC system in OpenPilot follows the typical DNN-based ACC
system architecture described in Fig. 1 with an end-to-end system
design [31]. Currently, OpenPilot supports over 250 car models
(e.g., Toyota, Honda, etc.) [32], has more than 10,000 active users
and has accumulated a total driving distance of over 100 million
miles on actual roads [8]. It is reported to achieve state-of-the-art
autonomous driving performance, beating 17 existing production
ADAS on the market in overall ranking by Consumer Reports [33].

The DNN model used by OpenPilot, called Supercombo, utilizes
an EfficientNet-B2 based CNN model to process image data [34]. It
incorporates the state of the vehicle and the environment by adding
additional inputs from traffic conventions and the desired state.
Multiple branches of GEMM (General Matrix Multiply) operations
are then used to derive various predictions, such as lane lines, LVs,
and vehicle pose, resulting in a total of 6,472 outputs [35].

Comma.ai offers the community a closed-loop simulation envi-
ronment [8] that integrates OpenPilot with a physical-world open
urban driving simulator called CARLA, which can generate near-
real high-quality camera image frames of the environment and
has been widely used in the literature of autonomous driving [36].
However, in this default simulation, the sensor fusion only relies
on the camera data since no radar sensor is available. Further, none
of the typical ADAS safety mechanisms are included.

3 Runtime Context-Aware Perception Attack
In this section, we introduce our attack model, attack challenges,
and runtime stealthy perception attack design.

3.1 Attack Model
Attacker Objective. The objective of the attacker is to maximize
the error in LV predictions by the LVD’s DNN module and cause
forward collisions, while remaining stealthy to avoid being detected
or prevented by driver or safety mechanisms (e.g., AEBS).

The attack is crafted in a stealthy way such that it is not distin-
guishable from noise, human errors, or accidents. This enables it to
remain hidden longer and makes it less easily detected/prevented
by existing defense mechanisms (e.g., anomaly detection [37] or
input transformation [38–40, 40]). The attacker can accomplish this
by targeting the DNN inputs (1 in Fig. 1) or directly manipulating
the DNN outputs (2), depending on their capabilities and access
level to the ACC system. In this paper, we primarily focus on DNN
inputs to enhance stealthiness, as detailed in Section 5.4.

Attacker Knowledge.We assume the attacker gains compre-
hensive knowledge about the target ACC system design and im-
plementation by reverse engineering a purchased or rented vehicle
with identical control software as the victim vehicle [14, 37] or by
studying publicly available documents or source code. This is pos-
sible given some production ACC systems are open source [8, 23].

Attacker Capabilities.We assume the attacker has the capabil-
ity to intercept and change live camera image frames at runtime to
compute an adversarial patch and fool the DNN model of ACC.

A possible way to achieve this is to implant malware by compro-
mising the over-the-air (OTA) update mechanisms [41–44] or gain-
ing one-time remote access to the ADAS software through scanning

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

Table 2: Threat models: attacker strength, capability, and impact.

Threat
Model

Attacker
Strength

Access to
ADAS Software

Vehicular
Networks

Computation
Location Impact Examples

Malware Strong1 ✓ r/w∗ within ADAS Fleet of
Vehicles [44, 52]

Wireless Medium2 r/w Local Device,
Remote Server

Single
Vehicle

[53][54][19]
[46][55]

Physical Weak3 r Remote Server Single
Vehicle

[56][57]
[58][59][60]

1 Other malware attacks are possible (e.g., DNN output, controller output);
2 Other sensor/actuator attacks are possible (e.g., RADAR, GPS, controller output);
3 Only perception attacks possible;
* r/w represents read (r) and write (w) access to vehicular networks.

the network, accessing stolen credentials and exploiting the vulner-
abilities in SSH protocol [45], browsers, access control [46], wireless
communications [46–48], third-party components connected to in-
vehicular network [49], or some remote service/backdoor offered
by the manufacturer (e.g., Comma Connect for OpenPilot [50] or
Bluelink for Hyundai). For example, a publicly-available tool de-
veloped for OpenPilot enables an attacker on the same network
as a target device to install a malicious code [51]. With such re-
mote access, the attacker can also change the OTA settings (e.g.,
remote URL) to prevent potential patches from being effective. This
assumption about the attack surface for deploying malware is also
supported by previous works [44, 52], and could have a large impact
as it can be generalized to any vehicle with similar OTA and DNN
mechanisms and target a large fleet of vehicles at the same time.

Another way to compromise live camera data is to connect to
a wireless communication device, either a third-party component
or one implemented by an attacker, connected to the vehicular
network, such as ROS communication channels [53], CAN Bus [42,
46, 55, 61] or Ethernet channel [19, 54]), to read and send image
data at runtime. The attacker computes the attack value on a local
wireless device or a remote server.

Further, physical attack methods are also viable, such as by dis-
playing the patch on a monitor attached on the rear side of a leading
adversarial vehicle [56, 57] or projecting the patch into the rear of
the LV using a projector [58–60].

Table 2 summarizes various methods for runtime reading and
modifying of live camera frames, given different attacker strengths
and capabilities. In this paper, we mainly focus on the runtime and
optimized modification of live camera frames to enhance attack
success rate and stealthiness, regardless of the threat model and how
the attacker obtained access. In our experiments, we implement the
attack through malicious OTA update to OpenPilot (Section 3.3).

Attacker Constraints. We restrict the scope of attack capa-
bilities in the paper to reading and modifying live camera data,
ensuring uniformity across all presented threat models. Although
some attack models could potentially enable more aggressive at-
tacks, such as directly altering ACC controller outputs (3 in Fig. 1)
via malware or wireless method or changing the DNN output (2)
with malware method, these may be easier or earlier identified by
safety mechanisms (e.g., AEBS) or human driver (see Section 5.4).

The attacker does not consider injecting or replaying pre-recorded
fake video frames as they need to be perfectly engineered offline
or be pre-recorded, would not suit the constantly changing envi-
ronment (e.g., surrounding vehicles, road conditions) at runtime,
and could be easily noticed by human drivers (see Appendix E).

3.2 Attack Challenges
Several challenges need to be addressed in attacking DNN-based
ACC systems at runtime.

C1. Optimal timing of attacks at runtime to cause safety
hazards. Prior attacks on ADAS that rely on random strategies to
determine the attack timing (start time and duration) have proven
ineffective in achieving a high attack success rate [18, 62, 63] as
they waste computational resources by trying random attack pa-
rameters that lead to no safety hazards. For instance, initiating an
attack on an Ego vehicle to induce sudden acceleration does not
cause safety hazards when no LV is detected. Recent works have
focused on using machine learning to explore the fault/attack pa-
rameter space [64] and improve the attack effectivenes [19, 63], but
they still require substantial amounts of data from random attack
experiments for model training. Finding the optimal triggering time
and duration is crucial for effective attacks, yet challenging due to
the vast parameter space that needs exploration.

C2. Generating attack value at runtime to adapt to dy-
namic changes in the driving environment. Attacking DNN-
based ACC systems on a moving vehicle faces challenges due to
continuous variations in the driving environment, such as object
position and size captured by the Ego vehicle’s camera. Existing
attack algorithms [13, 16] are inadequate as they plan perturba-
tions offline, assuming fixed sizes and locations for attack vectors.
A new algorithm is needed to dynamically adapt the attack vector’s
value (e.g., position, dimension, and amount of perturbation) to
match the LV’s dynamics. These changes disrupt the original attack
vector generation process, requiring a unique approach to address
inconsistencies and non-differentiability in the objective function.
In addition, the attack value should be designed in a stealthy way
to avoid detection by the human driver or safety mechanisms.

C3. Incorporating real-time constraints into the attack
optimization process. Previous attacks on DNN models assume
predetermined target images [13] or a known set [12, 16] with
unlimited computation resources, allowing iterative optimization
until an optimal attack vector is generated. However, attacking
ACC systems in real-time presents challenges as the camera contin-
uously provides frames without prior knowledge. An attack vector
must be generated in real-time before the next frame or control
action execution. The real-time control cycle and camera update fre-
quency limit the speed of generating the adversarial attack vector
and the frequency of assessing the perturbation’s impact on DNN
predictions. These tight constraints in typical ACC systems (e.g.,
frame rate of 20Hz and control cycle of 10ms in [8]) significantly
impact the effectiveness of optimization-based attack strategies.

3.3 Attack Design
Fig. 2 illustrates the overall design of our attack, including the steps
during the runtime execution and offline preparation.

To tackle challenge C1, rather than randomly or exhaustively
exploring the attack parameter space, we systematically charac-
terize specific values within the parameter space (e.g., attack start
time and duration). This targeted approach aims to identify optimal
system contexts (or critical times) for activating the attacks to not
waste time and resources on non-hazardous scenarios.

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Figure 2: Attack design: Offline preparation, Runtime execution.

To address the challenges C2-C3, we design a novel optimiza-
tion approach and an adaptive algorithm to dynamically determine
optimal pixel values for an adversarial patch at runtime, aiming to
maximize the error in DNN-based LV predictions and to accom-
modate dynamic changes in the driving environment. To optimize
attack effectiveness and computational efficiency, our method fo-
cuses on the small area of the bounding box around the target ve-
hicle and employs a primary attribution algorithm [65] to identify
and manipulate the most crucial pixels (Section 3.3.2). Additionally,
our adaptive algorithm retains optimization results of perturbation
size, position, and value from the previous perception cycle instead
of restarting the optimization process (contrary to other iterative
optimization methods [22]) to satisfy the tight real-time constraints
of the perception system (50ms).

The attacker initiates the attack process by conducting an offline
analysis on the target DNN-based ACC system. The analysis in-
cludes examining operational data and open-source code to identify
the target software files and functions and/or the DNN input and
output fields to be monitored and infected. Then the attack steps
outlined in the orange box in Fig. 2, are implemented and executed
either remotely or locally through unauthorized access to the tar-
get ACC under one of the threat models described in Table 2. In
Fig 2, we present an attack implementation example via malware
method that will replace the target functions or system libraries.
The attacker installs the malware on the target ACC system through
one-time access to the victim vehicle control system, achieved by
exploiting remote access vulnerabilities or compromising OTA up-
dates (Section 3.1). Appendix B provides an illustrative example of
how we install the malware on an OpenPilot system. At runtime,
the malicious code intercepts sensor data before reaching the DNN
model and infers the current system context for activating attacks.
When the detected system context aligns with a critical system
context (Section 3.3.1), an optimized adversarial patch is generated
(Section 3.3.2) and added to the image data and sent to DNN model.

3.3.1 Context-Aware Attack Activation. To find the most critical
times for activation of the attack (C1), we adopt a control-theoretic
hazard analysis method [66] to identify the most critical system
contexts under which specific control actions are unsafe and, if
issued by the ACC control software, could lead to hazards. This
approach mainly relies on domain knowledge about system safety
requirements and, contrary to an ML-based approach, does not
require large amounts of training data or computation resources.

In our hazard analysis, we define the accident as the adverse
event of forward collision (measured by a zero or negative relative
distance between the Ego vehicle and the LV or a front object).
This can happen as a result of the Ego vehicle transitioning into a
hazardous state that violates the safe following distance with LV.

Table 3: Partial safety context table for an ACC system.

Rule System Context Control Action Potential Hazards?

1 HWT⩽HWT𝑠𝑎𝑓 𝑒
RS⩽0

Acceleration

No
2 RS>0 Yes

3 HWT>HWT𝑠𝑎𝑓 𝑒
RS⩽0 No

4 RS>0 No
* HWT: Headway Time = Relative Distance/Current Speed;
* RS: Relative Speed = Current Speed (𝑉𝐸𝑔𝑜) - Lead Speed (𝑉𝐿𝑒𝑎𝑑);

To determine the critical system contexts, we assess all the combi-
nations of system states and ACC control actions (e.g., acceleration,
deceleration) to identify the specific combinations that are most
likely to lead to hazards. Table 3 shows part of the safety context
table for ACC with a focus on the acceleration commands. Here,
the critical system context is described as when the Headway Time
(HWT, the time the Ego vehicle takes to drive the relative distance
(𝑅𝐷) from the LV with the current speed) is less than a safety limit
HWT𝑠𝑎𝑓 𝑒 (e.g., 2-3s), and the Ego vehicle is faster than the LV
(𝑉𝐸𝑔𝑜 > 𝑉𝐿𝑒𝑎𝑑). Under such system context, an acceleration com-
mand induced by the camera perception attacks or other reasons
will most likely lead to a forward collision hazard. This high-level
specification of critical system context can be done by an attacker
based on the knowledge of the typical functionality of an ACC
system and be applied to any ACC system with the same functional
specification.

3.3.2 Adaptive Adversarial Patch Generation. The critical system
contexts identified in the previous section are based on the high-
level unsafe actions (e.g., Acceleration) issued by the ACC controller.
In order to find the specific attack values or DNN input perturba-
tions that can cause such unsafe control actions, we present an
optimization-based patch generation method as shown in Fig. 3.

Runtime Optimization-based Adversarial Patch Genera-
tion. To address challenge C2, we formulate the attack as the
following runtime optimization problem:

min
∑︁

𝑑∈𝑅𝐷𝑡

−▽𝑔(𝑑, 𝜃) + 𝜆 | |Δ𝑡 | |𝑝 (1)

s.t. 𝑃𝑎𝑡𝑐ℎ𝑡 = Δ𝑡 ∗𝑀𝑡 (2)
𝑃𝑎𝑡𝑐ℎ𝑡 ∈ [𝜇 − 𝜎, 𝜇 + 𝜎] (3)
𝐴𝑟𝑒𝑎(𝑃𝑎𝑡𝑐ℎ𝑡) ⊂ 𝐵𝐵𝑜𝑥 (𝐿𝑉)𝑡 (4)

𝑋𝑎𝑑𝑣
𝑡 = 𝑋𝑡 + 𝑃𝑎𝑡𝑐ℎ𝑡 (5)

[𝑅𝐷, 𝑅𝑆]𝑡 = 𝐿𝑉𝐷𝜃 (𝑋𝑎𝑑𝑣
𝑡−1) (6)

𝑢𝑡 = 𝐴𝐶𝐶 (𝑠𝑡 , [𝑅𝐷, 𝑅𝑆]𝑡) (7)
𝑠𝑡+1 = 𝐶𝑎𝑟𝑀𝑜𝑑𝑒𝑙 (𝑠𝑡 , 𝑢𝑡) (8)

where Eq. 1 is an objective function that aims at accelerating the
Ego vehicle as soon as possible to cause a forward collision.Directly
decreasing the probability of a lead vehicle or its bounding box
(BBox) cannot change the ACC system behavior. We instead design
an objective function that increases 𝑅𝐷𝑡 as much as possible while
keeping the perturbation value of the adversarial patch impercepti-
ble to human eyes.

In Eq. 1, 𝑔(𝑑) is an approximate polynomial function of 𝑑 that fits
the trend of the trajectory of the relative distance 𝑅𝐷𝑡 , predicted by
the DNNmodel with weight parameters 𝜃 . "-" is a negative sign that

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.
Safety Validation: Camera Perception

40

Adaptive Adversarial Patch Generation

Camera
Frames (!!)

Lead Object
Detection

Primary

Attribution

Identification

Optimization
-based Patch

Update

Faulty Image
Frames (!′!) DNN Model

Adaptive
Cruise Control

PID
Controller

Throttle
Brake

#$
!:

 R
el

at
iv

e
Di

st
an

ce
% !

: L
ea

d
Ve

hi
cl

e
Sp

ee
d

Adversarial
Patch Area

Identified Important PixelsBounding Box

Goal: Maximize
DNN Prediction
on Relative
Distance to
Lead Vehicle

Figure 3: Optimization-based adversarial patch generation.

converts our goal of maximizing the relative distance to minimizing
the proposed objective function. For example, when the gradient
of the relative distance trajectory, 𝑔(𝑑), is negative, minimizing
"−▽𝑔(𝑑)" will slow down the decrease of 𝑔(𝑑) and is equivalent to
maximizing the relative distance. We adopt the gradient of 𝑔(𝑑) in
the objective function instead of using 𝑅𝐷𝑡 itself in order to avoid
sharp changes in the predicted relative distance value, which might
be easily detected by some anomaly detection mechanisms. We
assume the attacker has access to the DNN predictions (e.g., 𝑅𝐷)
by monitoring the ADAS communication network (e.g., ROS) or
by running a replicated DNN model on a remote server or wireless
communication device (see Table 2).

In Eq. 5, the perturbation is added to the original image in-
put 𝑋𝑡 ∈ R𝐻×𝑊 ×𝐶 in the form of an adversarial patch 𝑃𝑎𝑡𝑐ℎ𝑡 ∈
R𝐻×𝑊 ×𝐶 , represented as a matrix of pixels with height H, width
W, and C color channels. 𝜆 is the weight parameter of the p-norm
regularization term, designed to minimize the perturbation value
of the patch for stealthiness. We limit the perturbation value within
the Kalman filter noise parameters (𝜇,𝜎) (Eq. 3), which ensures the
perturbation is not corrected by the sensor fusion. We also con-
strain the adversarial patch inside the BBox of the LV (Eq. 4) to
enhance attack effectiveness, minimize the perturbation area for
stealthiness, and reduce computational cost.

Primary Attribution Detection and Patch Update. As men-
tioned in Section 3.2, a major challenge (C3) in the design of runtime
attacks is the changes in the size and location of the LV in the per-
ceived image frames. To address this challenge, the attacker needs
to update the generated patch dynamically according to the approx-
imate DNN outputs. In this paper, we adopt an object detection
method [67] to detect and track the real-time location and size of
the LV and concentrate the attack perturbation within the detected
BBox of the LV. In production ACC with object detection features
[23], given proper access, the attacker can skip this step and use
the stock prediction results.

After getting the BBox, we utilize a primary attribution algorithm
[65] to quantify the relationship between input features and output
predictions. Through this exploration, we try to identify the impor-
tant pixels within the BBox of the LV that contribute the most to the
predictions of 𝑅𝐷𝑡 . The input pixels with high weights identified
by the attribution algorithm are marked by unit value in the mask
matrix𝑀𝑡 , and the remaining pixels are assigned zero values. This
mask matrix is then multiplied by the perturbation Δ𝑡 to generate
the adversarial 𝑃𝑎𝑡𝑐ℎ𝑡 (in Eq. 2). This step is useful as it can filter

out non-important pixels in the inputs to reduce the number of
perturbed pixels to improve the effectiveness of optimization-based
attacks and reduce computation costs of runtime attacks.

Finally, we develop a new initialization algorithm to shift the
patch position and adjust its size when the detected BBox changes
(Eq. 9-11). We shift the attack vector toward the new position of the
detected BBox of the LV with a magnitude of (𝑥𝑡 − 𝑥𝑡−1, 𝑦𝑡 −𝑦𝑡−1),
where (𝑥𝑡−1, 𝑦𝑡−1) and (𝑥𝑡 , 𝑦𝑡) are the centers of BBox at previous
and current control cycles, respectively (Eq. 9). We then expand
the adversarial patch attack vector (𝑃𝑎𝑡𝑐ℎ) to the dimension that
matches the size of the newly detected BBox of the LV. Instead
of reinitializing the whole attack vector matrix with random or
zero values, which will reset the whole optimization process, we
keep the previous patch values and intermediate variables and only
initialize newly expended units (Eq. 10-11). Fig. 4 shows an example.

𝑃𝑜𝑠 (𝑃𝑎𝑡𝑐ℎ𝑡) = 𝑃𝑜𝑠 (𝑃𝑎𝑡𝑐ℎ𝑡−1) + (𝑥𝑡 − 𝑥𝑡−1, 𝑦𝑡 − 𝑦𝑡−1) (9)

𝐼𝑛𝑖𝑡 (Δ𝑡) = [0] ∗ 𝑠𝑖𝑧𝑒 (𝐵𝐵𝑜𝑥 (𝐿𝑉)𝑡) +
[
Δ𝑡−1 0
0 0

]
(10)

𝐼𝑛𝑖𝑡 (𝑃𝑎𝑡𝑐ℎ𝑡) = 𝐼𝑛𝑖𝑡 (Δ𝑡) ∗𝑀 (11)

This algorithm maintains a continuous optimization process
across two consecutive perception cycles, which is critical in satis-
fying the real-time constraints. Fig. 5 shows a visualization of how
the adversarial patch affects the DNN predictions.

4 Safety Intervention Simulation
To evaluate the safety of DNN-based ACC systems under attacks,
we enhance the default OpenPilot and CARLA simulation platform
(see Section 2.3) to be more representative of real-world ADAS, by
developing a safety intervention simulator and mechanisms for
priority-based dispatching of control commands to CARLA and
fusion of camera and radar data (see Appendix A). An overview of
the simulation platform is shown in Fig. 6 (with the orange parts
representing our new implementations) and presented next.

To fill the gap in considering safety interventions and address
the challenge of ensuring the combination of human driver and
vehicle safe (see Section 2.2), we implement and integrate three
levels of safety interventions in the OpenPilot software (see Fig. 6),
includingADAS safety features (e.g., AEB and FCW), basic car safety
constraint checking on control commands, and driver interventions.

AEBS (FCW and AEB) Simulator. To design and test the AEBS
mechanisms in simulation, we thoroughly review the regulations
and requirements concerning AEBS [68] [69] [70] and adhere to
UN Regulation No. 152 [69]. We adopt and implement a time-to-
collision (TTC) based phase-controlled AEBS [71] in our platform.

The AEBS processes inputs from LVD outputs (after sensor fu-
sion), including relative distance (𝑅𝐷) and relative speed (𝑅𝑆), and
current speed 𝑉𝐸𝑔𝑜 (see Fig. 1). The average driver reaction time
(𝑇𝑟𝑒𝑎𝑐𝑡) is set to the commonly used constant value of 2.5s [12, 18].
Time thresholds, namely 𝑡𝑡𝑐 (time to collision), 𝑡𝑓 𝑐𝑤 (FCW time),
𝑡𝑝𝑏1 (1st phase partial brake time), 𝑡𝑝𝑏2 (second phase partial brake
time), and 𝑡𝑓 𝑏 (full brake time), are then calculated as follows:

𝑡𝑡𝑐 = 𝑅𝐷/𝑅𝑆 ; (12)
𝑡𝑓 𝑐𝑤 = 𝑇𝑟𝑒𝑎𝑐𝑡 +𝑉𝐸𝑔𝑜/4.5 (13)
𝑡𝑝𝑏1 = 𝑉𝐸𝑔𝑜/2.8; 𝑡𝑝𝑏2 = 𝑉𝐸𝑔𝑜/5.8; 𝑡𝑓 𝑏 = 𝑉𝐸𝑔𝑜/9.8 (14)

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

46

Shift & Enlarge Shift & Enlarge

Patch
Area

BBox Previous BBox Previous BBox

Patch
Area

Patch
Area

Figure 4: Examples of the shift and adjustment process in the patch generation. Inset figures are the zoomed-in
views of the front vehicle with an adversarial patch added around the license plate area.

ADS View under Attack
47

Predicted Position

Actual
Position

Ego
Vehicle

Lead
Vehicle

Figure 5: ACC under at-
tack.

BridgeSafety Intervention Simulator
Virtual Panda

57

OpenPilot

Message Communication

ACC
ALC PIDComputer

Vision
Sensor
Fusion

Driver
Reaction
Simulator

FCW AEB

Priority-based
Control

Command
Dispatcher

Safety Checks
Throttle

Brake

Steering

Command
Value

CheckSumDecoder

CARLA Simulator

Cameras

Ca
r

Ac
tu

at
or

Other
Sensors

Radar

Malware

Figure 6: Simulation platform. [Code Available:
https://github.com/gitguige/openpilot0.8.9]

As shown int Fig. 7, when 𝑡𝑡𝑐 falls below 𝑡𝑓 𝑐𝑤 , 𝑡𝑝𝑏1, 𝑡𝑝𝑏1, and
𝑡𝑝𝑏1, a corresponding action (warning or brake with 90%, 95%, 100%
force) is executed. Applying the brake blocks other ADAS controls.
See Appendix C for more details on AEBS design and testing.

In reality, when OpenPilot is installed on a car, some car models
lose the AEBS functionality [32], while others retain it. Also, AEBS
might rely on a separate ADAS camera [72], distinct from the Open-
Pilot camera, and a potential compromise of theAEBS camera data is
possible. Thus, we consider three scenarios for AEBS interventions:
(1) AEBS is enabled, and AEBS camera data is uncompromised; (2)
AEBS is enabled, but AEBS camera data is compromised; and (3)
AEBS is disabled (see Section 5.3.2 and Table 7).

Safety Constraint Checker. The OpenPilot safety mechanisms
are implemented in its control software and the Panda CAN inter-
face. Panda is a universal OBD adapter developed by Comma.ai [73]
that provides access to almost all car sensors through the CAN
bus and also enforces some safety constraints over output com-
mands. However, when integrated with the CARLA driving simula-
tor, OpenPilot does not utilize Panda software or hardware; thus
Panda safety checks are inactive.

To be as realistic as the actual OpenPilot on the road, we add a
virtual Panda module in our simulation that copies the exact logic
of Panda software [73]. Specifically, as shown in Fig. 6, the virtual
Panda decodes the CAN packages sent by the ACC and checks
whether their checksum is correct and the control command values
are within predefined thresholds [73]. For example, to ensure safety,
the maximum acceleration and deceleration of the vehicle shall
be limited between 2𝑚/𝑠2 and -3.5𝑚/𝑠2 respectively [30]. Only
the commands that pass the Panda safety checks are sent to the

Table 4: Driver simulator: activation conditions and reactions.

Activation Condition Driver Reaction Reaction Time

Alerts (e.g., FCW)

Emergency Brake & Zero Throttle
No changes in the steering angle 2.5 seconds

Unexpected Acceleration
Unsafe Cruise Speed
Unsafe Following Distance
Obvious Camera Perturbation

Hard Braking Stop brake and output regular throttle
No changes in the steering angle 2.5 seconds

Figure 7: AEBS. Figure 8: Control command dispatcher.

simulated vehicle actuators. In CARLA simulator, the final control
commands are truncated within the range of [0,1].

Driver Reaction Simulator. To assess driver interventions, we
develop a driver reaction simulator. The simulated driver is notified
when any safety alerts are raised by the ADAS (e.g., FCW) or when
the driver observes any abnormalities in the vehicle’s status or
camera user interface (UI). These ACC abnormalities include hard
braking, unexpected acceleration, the vehicle’s speed exceeding the
cruising speed bymore than 10%, unsafe following distance with the
lead vehicle (e.g., less than a vehicle length), or the mean perturba-
tion value in the UI surpassing a noticeable threshold, with a default
value of 15% representing an alert driver (𝑃𝑎𝑡𝑐ℎ.𝑚𝑒𝑎𝑛() > 0.15).
We assume a very alert driver who can notice any anomalies that
occur within a single control cycle (10ms). A predefined emergency
response will be issued by the driver accordingly (see Table 4), tak-
ing effect 2.5 seconds later (average driver reaction time). To mimic
the human driver’s braking behavior, we adopt a braking curve
function from previous research [18].

Priority-based Control Command Dispatcher. With mul-
tiple safety mechanisms in place, there might be conflicts among
the control commands issued by the OpenPilot ACC controller and
those generated by the safety interventions. To resolve such con-
flicts, we design a command dispatcher to transmit output control
commands to the CARLA actuators from various sources (e.g., ACC,
AEB, simulated driver) based on their priorities, with high-priority
commands overwriting low-priority ones (see Fig. 6 and Fig. 8). The
simulated driver’s actions have a higher priority than regular ACC
outputs, and control actions from the AEB have the highest priority.
The driver’s actions will be executed 2.5s (average driver reaction

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

time) after safety alerts (e.g., FCW) or noticing other ACC malfunc-
tions (see Table 4). ACC commands will be blocked or disengaged
when AEB or driver interventions are triggered.

5 Evaluation in Simulated Environment
This section presents the evaluation of our proposed context-aware
attack strategy (referred to as CA-Opt) using the enhanced simula-
tion platform presented in Section 4.

5.1 Methodology
We study the following research questions by comparing the ef-
fectiveness of CA-Opt attack to several baseline attack methods in
causing safety hazards (Section 5.2) and evading different safety
interventions (Section 5.3):

RQ1:Does strategic selection of attack times and values increase
the chance of hazards (forward collisions)?

RQ2: Does stealthiness design help maintain the attack effec-
tiveness in the presence of safety interventions?

RQ3: Does a perception input attack achieve better performance
than direct perception and control output attacks?

Baselines. We design three baseline attack strategies to answer
these questions (see Table 5).

To assess the effectiveness of our optimization-based adversar-
ial patch method in strategically selecting the attack values, we
compare it to two baselines: CA-Random, which introduces ran-
dom perturbations to perception inputs, and CA-APGD, which
uses a state-of-the-art gradient-based method, Auto-PGD [22], to
determine the perturbation values. Since the original Auto-PGD is
designed for misclassification, which does not work for attacking
ACC, we change the goal function (to ▽𝑔(𝑑), see Eq. 1) to maximize
relative distance prediction. We also limit the iteration number to
5, the maximum number of control cycles (100Hz) within a per-
ception cycle (20Hz)). Both baselines use the same context-aware
method as the proposed CA-Opt attack strategy to choose the at-
tack start time and duration. To evaluate our method’s efficiency
in selecting the timing and duration of attacks, we design another
baseline (Random-Opt) that selects a random start time uniformly
distributed within [5, 40] seconds and a random attack duration
uniformly distributed within [0.5, 2.5] seconds. To concentrate only
on the effect of different start times and durations, Random-Opt
shares the same adversarial patch generation method as CA-Opt.
For a fair comparison, we confine perturbations to the detected
bounding box (BBox) of the LV and update BBox size and position
with our proposed patch updating algorithm (Section 3.3.2).

Driving Scenarios.We model a 2016 Honda Civic, both with
and without basic safety features, navigating curvy and straight
sections of a highway using the "Town04_opt" map under clear
weather and dry road conditions in CARLA. We simulate four high-
risk driving scenarios designed based on the NHTSA’s pre-collision

Table 5: Overview of proposed and baseline attack strategies.

Attack Start Time Duration Attack Value #Sim.

CA-Random Context-Aware Context-Aware Random 1000
CA-APGD Context-Aware Context-Aware AutoPGD 1000
Random-Opt Uniform [5,40]s Uniform [0.5,2.5]s Opt-based 1000
CA-Opt (Ours) Context-Aware Context-Aware Opt-based 1000

1.2% 0.0% 0.8% 0.8%

58.4%
49.2% 54.8% 51.2%

4.8% 1.6% 3.6% 4.0%

100.0% 100.0% 100.0% 100.0%

0.0

0.5

1.0

SC1 SC2 SC3 SC4

Su
cc

. R
at

e

CA-Random CA-APGD Random-Opt CA-Opt

70

Random Value Patch Opt-based Value PatchAPGD-based Value Patch

Figure 9: Top: Adversarial patch examples generated using proposed
method vs. random and APGD-based methods. Bottom: Success rate
of CA-Opt and baseline attacks in absence of safety interventions.

scenario topology report [74]. The Ego vehicle, traveling at 60 mph
and positioned 75 meters away, encounters a LV exhibiting various
behaviors: (SC1) LV cruises at the speed of 35 mph; (SC2) LV cruises
at the speed of 50 mph; (SC3) LV slows down from 50 mph to 35
mph; and (SC4) LV accelerates from 35 mph to 50 mph.

Our experiments are done on Ubuntu 20.04 LTS, with OpenPilot
v0.8.9 and CARLA v9.11. A single simulation of OpenPilot contains
5,000 time steps, and each step lasts about 10 ms, which equals
50 seconds in total. However, if an attack leads to a collision, the
simulation ends earlier. For Random-Opt, we randomly select ten
start times and five durations for each test scenario and repeat
them five times, which results in 1,000 simulations. The same total
number of simulations is done for CA-Opt and other baselines.

5.2 Attack Success Rate in Causing Hazards
To assess the CA-Opt attack’s effectiveness in inducing safety haz-
ards (RQ1), we conduct experiments in the closed-loop simulation
platform without enabling the safety interventions. This setting is
similar to previous works [12, 16].

We consider an attack successful if a collision event is observed
(Ego vehicle collides with LV) or relative distance between LV and
Ego vehicle is no larger than 0m. The success rate is reported across
1,000 simulations, if not specified otherwise.

Fig. 9 displays the success rates for each attack. The CA-Random
attack leads to hazards in less than 1.2% of scenarios, with an overall
success rate of 0.7%. This low rate suggests that randomly generated
adversarial patches minimally impact the DNN model predictions
and rarely cause hazards. Increasing the random perturbation val-
ues of the adversarial patch also does not significantly enhance the
success rate. This is because OpenPilot’s DNN model is primarily
trained to detect the front objects but not to identify their specific
class, thus showing greater resilience to adversarial attacks. Addi-
tionally, patches with larger perturbation values are more visible
to the driver than those from the optimization-based method (Fig.
9-Top), potentially alerting the driver to prevent hazards.

In contrast, the proposed CA-Opt attack achieves a 100% success
rate in all testing scenarios, surpassing CA-Random by 142.9 times.
Although CA-APGD uses a similar goal function as CA-Opt, it does
not cause hazards in 46.6% of simulations, mainly due to limiting its
number of iterations to satisfy real-time constraints. On the other

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

hand, by employing a dynamic patch updating algorithm, the CA-
Opt attack ensures the continuity of the optimization process across
the perception cycles and enhances the attack’s effectiveness.

We also observe that the Random-Opt baseline only achieves
an average success rate of 3.5%, 28.6 times lower than the CA-Opt,
as it wastes resources by injecting perturbations at non-critical
system states. This highlights the importance of strategic timing of
attacks and the insufficiency of optimization-based methods alone
in causing hazards.

Observation 1: CA-Opt is more efficient than baselines in iden-
tifying the most critical times and optimal DNN perturbation
values for attacking the ACC systems at runtime and overcom-
ing real-time constraints (C3).

5.3 Attack Stealthiness with Safety
Interventions

This section studies the impact of the safety interventions and the
stealthiness design on attack efficiency (RQ2).

5.3.1 Stealthiness in Perception Input. To evade detection by safety
mechanisms and human driver, the adversarial patch should stay
as stealthy as possible. Basically, the smaller the value of the pix-
els’ perturbations, the stealthier the attack will be. Therefore, we
tested our attack method with three different 𝜆 values in Eq. 1. We
use two sets of metrics to evaluate the stealthiness of the patch,
including (i) the degree of the pixel perturbation measured using
𝐿2 and 𝐿∞ distance [75] and (ii) the similarity between the original
camera image and the perturbed image, calculated using RMSE and
universal image quality index (UIQ) [76].

Table 6 presents the results averaged over all the test scenar-
ios and simulations. The CA-Opt attack achieves at least a 99.2%
success rate under all three stealthiness levels and keeps the per-
turbation degree less than 0.015 (𝐿∞) and 0.184 (𝐿2). The perturbed
image with the adversarial patch has a similarity of UIQ = 0.993 (1
means identical) to the original image. We choose the 𝜆 value to be
10−3 in our evaluations because of its stealthiness and high attack
effectiveness. Examples of the generated adversarial patches (with
𝜆 = 10−3) are presented in Fig. 4 (see the zoomed-in area) and Fig.
9, which are almost invisible to human eyes.

To further evaluate the stealthiness of our attack design, we also
conduct a user study with 30 participants. Results show that adver-
sarial patches at 𝜆 = 10−2 and 𝜆 = 10−3 are almost imperceptible
to human drivers, and the patches generated by CA-Opt attacks are
less noticeable than those generated by baseline perception attacks
(CA-Random and CA-APGD) (refer to Appendix D for more details).

Table 6: Attack success rate with different patch stealthiness levels.

Stealthiness
Level 𝜆

Succ.
Rate

Perturbation Pixel Image Similarity

𝐿2 𝐿∞ RMSE(×10−5) UIQ

10−2 99.2% 0.086 0.015 1.061 0.993
10−3 100% 0.128 0.015 1.168 0.993
10−4 100% 0.184 0.015 1.319 0.993

* 𝐿2 and 𝐿∞ distances are the normalized perturbation values of the attack
vector matrix in the range of [0,1]. Image similarity is evaluated by comparing
the RMSE and UIQ between the original image and the perturbed image with
the patch. Smaller RMSE and larger UIQ mean higher similarity.

Table 7: Performance of attacks with all the safety features and
different AEBS settings.

Safety
Interventions

Attack
Method

Intervention
Activation Rate

Succ.
Rate

Hazard
Prevention Rate

All &
AEBS Not Compromised
(Independent Camera)

CA-Random 27.4% 0 100% (7/7)
CA-APGD 100% 0 100% (534/534)
CA-Opt 100% 48.7% 51.3% (513/1000)

All &
AEBS Disabled/
Compromised (Shared Camera)

CA-Random 23.8%/ 24.3% 0 100% (7/7)
CA-APGD 100% 0 100% (534/534)
CA-Opt 100% 82.6% 17.4% (174/1000)

Figure 10: Evaluation with different driver sensitivity thresholds.

5.3.2 Evading Safety Interventions. For a more realistic evaluation
of the effectiveness of different attack strategies, we rerun our ex-
periments with different safety interventions (introduced in Section
4). A calibration of the safety features is performed before the exper-
iments to ensure the interventions are triggered correctly without
any false positives. We test each attack method with different AEBS
configurations: (i) AEB/FCW depends on an independent camera
that is not compromised, (ii) AEB/FCW utilizes compromised cam-
era inputs similar to the ACC (simulating stock ACC and AEBS
that share a camera or independent ACC and AEBS cameras that
are both compromised), or (iii) AEB/FCW is disabled. Driver in-
tervention and ACC safety constraint checking (OpenPilot Panda
checks) are considered for all three settings. Here, we do not test
the Random-Opt attack due to its similarity to CA-Opt but with
worse performance. We assess the efficacy of each attack method
using metrics such as the attack success rate, safety intervention
activation rate (indicating the percentage of simulations triggering
safety interventions), and hazard prevention rate (the percentage
of simulations where hazards occur without safety interventions).

Table 7 shows the experimental results of each attack method
with different safety intervention configurations. We observe that,
regardless of the interventions, the CA-Random and CA-APGD
attacks fail to cause any hazards due to their low baseline success
rates (see Fig. 9) and their noticeable perturbations that trigger the
driver interventions in 23.8-27.4% and 100% of scenarios. These
findings highlight the effectiveness of human drivers in preventing
accidents and keeping autonomous driving safe.

In contrast, with AEBS disabled, the CA-Opt attack resulted in
an average attack success rate of 82.6%. We also conduct experi-
ments that simulate higher driver sensitivity levels by decreasing
the mean perturbation value threshold for activating driver inter-
vention from the default value of 15% (see Section 4) to 10%, 5%,
2%, 1.5%, 1%, and 0.5%. As shown in Fig. 10, when perturbation
thresholds are set to 0.5% and 1% (representing highly sensitive
driver), the adversarial patch triggers driver interventions in all and
79.6% of the simulations, leading to attack success rates of 0% and
20.4%, respectively. However, with thresholds higher than 1.5%, our
attack maintains an 82.6% success rate. This finding underscores
the robustness of the generated adversarial patch in evading driver
detection across a range of driver sensitivities.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

When AEBS is enabled and uses the same compromised camera
inputs as ACC, we observe a similar high success rate (82.6%) for the
CA-Opt attacks that affect both the ACC and AEBS functionalities.
However, the CA-Opt attack encounters challenges when the AEBS
relies on uncompromised camera data from an independent cam-
era. In this scenario, the attack triggers AEBS interventions in all
simulations. But it still maintains a success rate of 48.7% through a
gradual (stealthy) change in the vehicle state (see Fig. 11) that delays
AEBS activation and leaves insufficient time for hazard prevention.

Observation 2: Our simulated safety interventions are effective
in preventing accidents, and as required for L2 AVs, the human
driver should always be in the loop and actively monitor ADAS
to ensure safety.

Observation 3: CA-Opt attack is more effective than baselines
in keeping perturbations stealthy and causing hazards without
being mitigated by safety interventions.

5.4 Comparison to DNN Output and Control
Output Attacks

The stealthy perturbations on the perception input can get propa-
gated through the DNNmodel and ACC logic and lead to changes in
the DNN output (2 in Fig. 1) and ACC control output 3 . Although
the attacker’s goal is to maximize errors in DNN output and cause
sudden accelerations on the ACC output, large deviations in vehicle
states may be detected by the human driver or existing safety and
defense mechanisms. To further evaluate the stealthiness of our
proposed attack (CA-Opt), we compare deviations resulting from
the attack to those caused by stealthy attacks directly on DNN and
control outputs. Note such attacks are only possible under specific
threat models (e.g., malware or wireless methods) in Table 2.

Control Output Attacks. We first examine deviations in the
autonomous vehicle states and control outputs resulting from the
attack compared to two baseline output attacks, called MaxOut
and StrategicOut. These attacks directly modify ACC output con-
trol commands, by setting them to a maximum allowed accelera-
tion value (MaxOut) or a strategic value (StrategicOut) based on a
method from prior research [18]. But they use the same context-
aware method as CA-Opt for selecting attack times and durations.

Fig. 11 illustrates an example scenario. The MaxOut attack leads
to faster collisions, but also results in more noticeable changes in
critical states such as gas, acceleration, and vehicle speed. These
significant alterations are easily detectable by anomaly detection
mechanisms or can be promptly noticed and addressed by human
drivers. In contrast, fixed perturbations injected by CA-Opt attack
to DNN perception inputs may not propagate to cause any changes
in ACC output or if they cause any changes, it will not be larger
than the maximum possible acceleration caused by MaxOut attacks.
These perturbations lead to gradual deviations of system states
over a longer time period, thus achieving a high success rate (as
shown in Fig. 9) while reducing the likelihood of detection. Al-
though StrategicOut produces smaller deviations strategically to
avoid safety alerts, changes in vehicle states (e.g., speed) are still
more noticeable than the CA-Opt perception attack.

Table 8: Performance of StrategicOut attack with all the safety fea-
tures and different AEBS settings (AEBS with Shared Camera).

Safety
Interventions

Attack
Method

Succ.
Rate

Hazard
Prevention Rate

All & AEBS Activated StrategicOut 20.3% 79.7% (797/1,000)
All & AEBS Disabled StrategicOut 81.9% 18.1%(181/1,000)

All & AEBS Activated OptOut 34.5% 65.5 (655/1,000)

Figure 11: Context-Aware perception attacks vs. output attacks.

We also evaluate the success rate of StrategicOut attack under
two different safety intervention configurations. We do not assess
the MaxOut attack due to its high likelihood of being detected.
Table 8 shows that without AEBS, StrategicOut achieves a success
rate of 81.9% by generating attack values within safety limits and
avoiding driver intervention. However, with AEBS active, using the
same camera inputs as ACC, the success rate drops significantly to
20.3%, due to AEBS interventions triggered in all simulations.

We further compared the CA-Opt attack with a stealthy control
output attack that causes the exact deviations of the state variables
as the proposed perception attack (referred to as OptOut). Specifi-
cally, we reran the simulations and injected the faults by setting the
control output to the recorded output traces caused by the CA-Opt
perception attack. We observed that the OptOut attack achieved a
higher success rate (34.5%) than the StrategicOut attack. However,
it did not change the DNN predictions or affect the AEBS function,
thus triggering safety interventions more easily and earlier than
the CA-Opt attack. In addition, CAN outputs are encrypted in some
car models [19], increasing the attack cost.

DNN Output Attacks. Similarly, we compare CA-Opt attack
with a stealthy attack that directly compromises DNN output 2
(referred to as DNNOut) by formulating an optimization problem
to maximize the RD prediction within one standard deviation while
ensuring the satisfaction of safety constraints on acceleration and
speed [18]. We calculate the acceleration and speed values corre-
sponding to RD predictions by replicating the Openpilot MPC and
PID algorithms. This baseline uses the same context-aware method
as CA-Opt for selecting the attack times and durations. We observe
that the DNNOut attack causes a more obvious change in the RD
predictions (see Fig. 12) compared to CA-Opt attack on DNN inputs
1 , which then results in similar obvious changes in the gas, speed,
or acceleration as depicted in Fig. 11.

Observation 4: CA-Opt attack has advantage over direct DNN
or control output attacks in minimizing vehicle state changes
to evade detection by safety interventions, while maintaining
high effectiveness in causing hazards.

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

2000 2250 2500 2750 3000 3250 3500
Time (step: 10ms)

0

50

100
Pr

ed
ict

ed
 R

el
. D

ist
.(m

)
Normal
Attack Start Time
CA-Opt(DNNInput)
DNNOut Attack

Figure 12: CA-Opt perception attack vs. DNN output attack.

Figure 13: Relative distance predictions with (solid lines) or w/o
(dashed lines) adversarial patch for different driving scenarios.

6 Evaluation in Real-World Settings
In this section we aim to answer the following questions about the
effectiveness of our attack in real-world settings.

RQ4: Can our attack transfer well from simulation to real-world
implementation?

RQ5: Can our attack evade detection or mitigation by the exist-
ing adversarial patch defense methods?

We also have evaluated the runtime overhead of our attack and
its robustness to real-world factors, as described in Appendix F-G.

6.1 Performance on Actual Vehicles
We assess the feasibility of the CA-Opt attack on an actual vehicle
(Lexus NX 2020) equipped with a production L2 ADAS, Comma 3,
running OpenPilot software v0.8.9 by examining the attack impact
on (i) the DNN perception module only and (ii) the end-to-end ACC.

Perception Module Evaluation.We evaluate the perception
module in two scenarios of approaching an LV when (i) parked in a
parking lot and (ii) driving on an actual road. In each scenario, the
ACC on the Ego vehicle was tested with and without the adversarial
patches injected to the camera frames.

First, the Ego vehicle was parked at distances ranging from 10m
to 50m (at intervals of 5m) to the LV. We modified the OpenPilot
code to display the RD predictions on the device monitor, as shown
in Fig. 14-1a,1b. In these tests, the CA-Opt attack caused an average
deviation of 16.2m in distance predictions, which could likely lead to
a forward collision in the end-to-end ACC. This conclusion is based
on our simulation experiments, where deviations exceeding 10
meters triggered sudden accelerations, leading to forward collisions.

Then, we conducted experiments using the same scenarios (SC1-
SC4) outlined in Section 5.1. For an accurate assessment of the
impact of the attack, we cloned the LVD’s DNN model within
the OpenPilot control software and ran both the original and the
duplicate model on the AV simultaneously. During each perception
cycle (20Hz), we initially supplied a benign image to the standard
DNN model. Then, we duplicated this benign image, injected the
adversarial patch to it, and then fed it to the second DNNmodel. The
predictions from eachmodel were recorded in separate log files. The
results, presented in Fig. 13, indicate that the attack increased RD
predictions by an average of 15.3 meters across all tested scenarios.

(1a) (2a) (2c)

(1b) (2b) (2d)
Figure 14: RD predictions w/o (1a) or w (1b) patch on an actual vehicle
in a parking lot; (2a) Side view of lead car model; (2b) AV under
perception attack collides with the lead car model; (2c) AV follows
the car model in a benign scenario; (2d) Driver’s view upon collision.

We also conducted experiments using a real-world video dataset
as described in Appendix H. These experiments demonstrate the
effectiveness of CA-Opt attack in impacting the DNN-based per-
ception module in real-world driving scenarios.

End-to-End Evaluation.We also evaluate the impact of attacks
on the end-to-end ACC on actual vehicle. To ensure the safety of
both the driver and the vehicle, we constructed a lead car model
from PVC pipe, designed to match the dimensions of a real BMW
car model [77]. We aimed for the OpenPilot system to recognize
this fabricated car as a genuine vehicle by attaching a rear-view
image of a car to its rear end (see Fig. 14-2c). In this experiment, the
AV approached the LV from a distance of 50 meters with a cruise
speed set at 28 mph. Meanwhile, the LV was propelled by two
remote-controlled ground robots (Fig. 14-2a). We conducted this
experiment with and without attack (adversarial patches) activated.

OpenPilot software successfully recognized the lead car model
as a legitimate vehicle and maintained a safe following distance and
speed (about 5mph) in the benign scenario (see Fig. 14-2c). However,
in the presence of the attack, the AV continued to advance toward
the lead car and eventually collidedwith it (Fig. 14-2b), despite AEBS
being activated (Fig. 14-2d). This underscores the generalization
of our proposed attack in efficiently causing safety hazards and
exposes the inadequacy of existing safetymechanisms in preventing
the attack. Moreover, the time between the AEBS warning and
the collision was approximately 1.5-2.2 seconds, shorter than the
average driver reaction time of 2.5 seconds, leaving insufficient
time for a human driver to intervene and prevent the collision.

6.2 Evading Existing Defense Methods
While our proposed stealthy adversarial patches are invisible to
human eye, they may be detected by some existing defense methods.

Adversarial Patch Detection. Methods such as gradient mask-
ing [78], lossy compression [79], or adversarial training [80] have
been proposed for adversarial patch detection. However, thesemeth-
ods either need to be trained on specific attacks with high com-
putation costs [81–83] or significantly sacrifice DNN prediction
accuracy [78, 84], which negatively affect ACC systems’ safety.

We assess four widely used open-source defense methods that
only rely on model input transformation without the need for re-
training, including adding Gaussian noise [38], JPEG compression

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

Figure 15: Results of each directly-applicable defense method.

[39], reducing image color bit-depth [40], and using spatial median
smoothing [40]. We implement all these defense methods by chang-
ing each input image frame with various parameter settings (as
shown in the x-axis of Fig. 15). We evaluate the attack success rates
in causing hazards under each defense method while considering
the effect of input transformations on the benign or attack-free
image frames to maintain the baseline safety of the ACC system.

As shown in Fig. 15, JPEG compression and bit-depth reduction
methods effectively reduce the attack success rate under specific
parameter configurations. However, these methods fall short in
maintaining the ACC’s safety by leading the benign image frames
to cause hazards. In instances where the benign cases do not lead
to hazards, the attack hazard rate is at 100%. On the other hand,
the incorporation of Gaussian noise or median smoothing reduces
the ACC’s LV detection accuracy. These methods are ineffective
in mitigating CA-Opt attacks (hazard rate stays at 100% for all
configurations), while also causing hazards for benign frames.

These results indicate that our attack can easily evade the di-
rectly applicable defense methods. More advanced methods, such as
adversarial training, may need to be developed/trained specifically
for our design, which are subject to future direction.

Sensor Fusion.An alternative defense against adversarial patches
could involve integrating independent sensors like Lidar or radar
with camera data for LVD predictions. However, Lidar is too costly
for Level-2 AVs [12], and our tests found that radar-camera fu-
sion did not prevent ACC misbehavior or collisions (see Appendix
A). This may be because of using Kalman filters for sensor fusion,
which assume measurement noise is zero-mean Gaussian and are
vulnerable to perturbations smaller than one standard deviation of
this noise [19]. In addition, sensor fusion outputs a weighted sum-
mation of radar and camera predictions, which cannot completely
eliminate deviations caused by erroneous camera predictions, par-
ticularly when they significantly deviate from the ground truth. In
some production ACC, camera predictions carry more weight. The
sensor fusion vulnerability was also reported in previous work [85].

7 Discussion
Sim-to-Real Gap. Addressing the sim-to-real gap in AV security
literature is challenging due to the risks and costs of real-road tests.
In this paper, we tried to narrow this gap by developing a realistic
experimental platform that integrates production ADAS control
software, a physical-world simulator, and well-designed safety in-
terventions with high-risk driving scenarios designed based on the
NHTSA report [74]. Moreover, we evaluate the sim-to-real transfer
possibility using an actual vehicle, a model lead car, and a publicly
available dataset. However, there are still some limitations, such as
using fixed models and thresholds in the design of the driver reac-
tion simulator, that may impact evaluation results. Also, additional
firmware and safety checks might be deployed in real cars, which
can further limit the effectiveness of the proposed attack.

Attack Method Generalization. We demonstrate the general-
ization of our proposed attack on a production ACC system, Open-
Pilot, through closed-loop simulation, real-world AV dataset, and
actual vehicle experiments. However, the vulnerability of other
Level-2 production ACC systems, such as Tesla Autopilot or Cadil-
lac Super Cruise, to our attacks remains uncertain due to their
closed-source nature. While we cannot directly evaluate our at-
tacks on these systems, it is reasonable to argue that our results
hold generalization potential based on the representative nature of
the OpenPilot ACC system. Specifically, our attack strategy, which
leverages context awareness derived from high-level system hazard
analysis, can be generalized to diverse ACC systems. Furthermore,
our optimization-based attack vector generation can be applied to
other DNN-based ACC systems, given the inherent vulnerability of
DNNs to adversarial input perturbations [12, 13, 19, 86].

8 Related Work
Adversarial Attacks on DNN.Many works have explored the vul-
nerability of DNN against adversarial attacks by adding adversarial
physical/digital patches or stickers [10–14, 56, 86–88]. However,
most of these works focus on altering the prediction class or proba-
bility or lane line position, which do not apply to attacks against
ACC. Moreover, they rely on off-line optimization of attack value,
neglecting the impact of attack timing. In contrast, our work intro-
duces a novel runtime perception attackmethod against DNN-based
ACC systems, employing a combined knowledge and data-driven
approach that considers both attack timing and value for enhanced
effectiveness. The only other work on ACC [16] focused on the
physical attacks without considering dynamic changes at runtime,
which is not scalable to many vehicles.

Security Analysis of AVs. Great efforts have also been made
in studying the security of AVs, such as the security of Lidar [89],
GPS [90], radar [91], camera [92], lane detection [12, 14], multiple
objects tracking [19, 27, 28], control software [18, 93], and safety
mechanisms [17]. To the best of our knowledge, this paper is the
first analysis of the security of Level-2 production ACC systems
under stealthy safety-critical attack by considering three levels of
safety interventions by constraint checking, human driver, and
AEB/FCW and addressing unique challenges (Section 3.2).

9 Conclusion
This paper proposes a novel runtime stealthy attack strategy against
DNN-basedACC systems, consisting of (i) a control-theoreticmethod
for finding the most critical system contexts for launching the at-
tacks tomaximize the chance of safety hazards and (ii) an optimization-
based image perturbation method for efficient generation and in-
jection of adversarial patches to the DNN input to cause ACC
control misbehavior and hazards as soon as possible before being
detected or mitigated by the ADAS safety mechanisms or human
driver. Experiments on a production Level-2 ADAS using an en-
hanced closed-loop simulation platform, a publicly available driving
dataset, and an actual vehicle demonstrate the effectiveness of our
approach in improving attack success rate and stealthiness com-
pared to different baselines. This study also provides insights into
the development of future ADAS that are robust against safety-
critical attacks and the importance of interventions by the drivers
and basic safety mechanisms for preventing attacks.

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Acknowledgment
This work was partially supported by a gift from Toyota InfoTech-
nology Center and by the National Science Foundation (NSF) under
Grants 2402941 and 1931997.

References
[1] SAE Levels of Driving Automation™ Refined for Clarity and International

Audience. https://www.sae.org/blog/sae-j3016-update, 2021.
[2] Number of autonomous vehicles globally in 2022, 2022.
[3] Adaptive Cruise Control (ACC) Operating Characteristics and User Interface:

Standard J2399. Society of Automotive Engineers, 2021.
[4] Taxonomy and definitions for terms related to driving automation systems for

on-road motor vehicles. SAE international, 4970(724):1–5, 2018.
[5] Ratheesh Ravindran, Michael J Santora, and Mohsin M Jamali. Multi-object

detection and tracking, based on dnn, for autonomous vehicles: A review. IEEE
Sensors Journal, 21(5):5668–5677, 2020.

[6] Sarthak Sharma, Junaid Ahmed Ansari, J Krishna Murthy, and K Madhava
Krishna. Beyond pixels: Leveraging geometry and shape cues for online multi-
object tracking. In 2018 IEEE International Conference on Robotics and Automation,
pages 3508–3515, 2018.

[7] Tesla autopilot. https://www.tesla.com/autopilot.
[8] Comma.ai. Openpilot. https://comma.ai/openpilot.
[9] Shuai Zhou, Chi Liu, Dayong Ye, Tianqing Zhu, Wanlei Zhou, and Philip S

Yu. Adversarial attacks and defenses in deep learning: From a perspective of
cybersecurity. ACM Computing Surveys, 55(8):1–39, 2022.

[10] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran Chen. Dpatch:
An adversarial patch attack on object detectors. arXiv:1806.02299, 2018.

[11] Mark Lee and Zico Kolter. On physical adversarial patches for object detection.
arXiv:1906.11897, 2019.

[12] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin, and Qi Alfred
Chen. Dirty road can attack: Security of deep learning based automated lane
centering under physical-world attack. In 30th USENIX Security Symposium,
pages 3309–3326, 2021.

[13] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world at-
tacks on deep learning visual classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1625–1634, 2018.

[14] Tencent. Experimental security research of tesla autopilot. Tencent Keen Security
Lab, 2019.

[15] Juncheng Li, Frank Schmidt, and Zico Kolter. Adversarial camera stickers:
A physical camera-based attack on deep learning systems. In International
Conference on Machine Learning, pages 3896–3904, 2019.

[16] Yanan Guo, Takami Sato, Yulong Cao, Qi Alfred Chen, and Yueqiang Cheng.
Adversarial attacks on adaptive cruise control systems. In Proceedings of Cyber-
Physical Systems and IoT Week 2023, pages 49–54. 2023.

[17] Yuzhe Ma, Jon A Sharp, Ruizhe Wang, Earlence Fernandes, and Xiaojin Zhu.
Sequential attacks on kalman filter-based forward collision warning systems.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
8865–8873, 2021.

[18] Xugui Zhou, Anna Schmedding, Haotian Ren, Lishan Yang, Philip Schowitz, Ev-
genia Smirni, and Homa Alemzadeh. Strategic safety-critical attacks against an
advanced driver assistance system. In 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 79–87, 2022.

[19] Saurabh Jha, Shengkun Cui, Subho Banerjee, James Cyriac, Timothy Tsai, Zbig-
niew Kalbarczyk, and Ravishankar K Iyer. Ml-driven malware that targets av
safety. In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 113–124, 2020.

[20] Xugui Zhou, Bulbul Ahmed, James H Aylor, Philip Asare, and Homa Alemzadeh.
Hybrid knowledge and data driven synthesis of runtime monitors for cyber-
physical systems. IEEE Transactions on Dependable and Secure Computing, 2023.

[21] Hongjun Choi, Sayali Kate, Yousra Aafer, Xiangyu Zhang, and Dongyan Xu.
Software-based realtime recovery from sensor attacks on robotic vehicles. In
23rd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), pages 349–364, 2020.

[22] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial ro-
bustness with an ensemble of diverse parameter-free attacks. In International
conference on machine learning, pages 2206–2216. PMLR, 2020.

[23] Baidu. Apollo. https://developer.apollo.auto/.
[24] Gary Bishop, Greg Welch, et al. An introduction to the kalman filter. Proc of

SIGGRAPH, Course, 8(27599-23175):41, 2001.
[25] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer

science & business media, 2013.
[26] Richard C Dorf Robert H Bishop. Modern control systems. 2011.
[27] Chen Ma, Ningfei Wang, Qi Alfred Chen, and Chao Shen. WIP: Towards

the Practicality of the Adversarial Attack on Object Tracking in Autonomous

Driving. In Inaugural International Symposium on Vehicle Security & Privacy,
2023.

[28] Yunhan Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Zhenyu Zhong, and Tao
Wei. Fooling detection alone is not enough: First adversarial attack against
multiple object tracking. arXiv:1905.11026, 2019.

[29] Adas cameras: How they work and why they need calibration. https://
caradas.com/adas-cameras/.

[30] Safety Architecture. https://blog.comma.ai/how-to-write-a-car-port-for-
openpilot, 2018.

[31] Li Chen, Tutian Tang, Zhitian Cai, Yang Li, Penghao Wu, Hongyang Li, Jianping
Shi, Junchi Yan, and Yu Qiao. Level 2 autonomous driving on a single device:
Diving into the devils of openpilot. arXiv:2206.08176, 2022.

[32] Supported Cars by OpenPilot. https://github.com/commaai/openpilot/blob/
master/docs/CARS.md.

[33] Consumer Reports. CR Active Driving Assistance Systems: Test Results &
Design Recommendations. https://data.consumerreports.org/reports/cr-active-
driving-assistance-systems/.

[34] Anna Schmedding, Philip Schowitz, Xugui Zhou, Yiyang Lu, Lishan Yang, Homa
Alemzadeh, and Evgenia Smirni. Strategic resilience evaluation of neural net-
works within autonomous vehicle software. In 43rd International Conference on
Computer Safety, Reliability and Security (SafeComp), 2024.

[35] Comma.ai. Supercombo. https://github.com/commaai/openpilot/tree/
90af436a121164a51da9fa48d093c29f738adf6a/selfdrive/modeld/models.

[36] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st
Annual Conference on Robot Learning, pages 1–16, 2017.

[37] Kyounggon Kim, Jun Seok Kim, Seonghoon Jeong, Jo-Hee Park, and Huy Kang
Kim. Cybersecurity for autonomous vehicles: Review of attacks and defense.
Computers & Security, 103:102150, 2021.

[38] Yuchen Zhang and Percy Liang. Defending against whitebox adversarial attacks
via randomized discretization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 684–693, 2019.

[39] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A study of
the effect of jpg compression on adversarial images. arXiv:1608.00853, 2016.

[40] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. arXiv:1704.01155, 2017.

[41] Cybersecurity risks for hi-tech autonomous and electric vehicles indus-
try. https://www.linkedin.com/pulse/cybersecurity-risks-hi-tech-autonomous-
electric-vehicles-samrat-seal/.

[42] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. Plug-n-pwned: Compre-
hensive vulnerability analysis of OBD-II dongles as a new over-the-air attack
surface in automotive iot. In 29th USENIX security symposium (USENIX Security
20), pages 949–965, 2020.

[43] Rudi Mocnik, Daniel S Fowler, and Carsten Maple. Vehicular Over-the-Air
Software Upgrade Threat Modelling. In Cenex-LCV and Cenex-CAM 2023.

[44] Abdulrahman Abu Elkhail, Rafi Ud Daula Refat, Ricardo Habre, Azeem Hafeez,
Anys Bacha, and Hafiz Malik. Vehicle security: A survey of security issues and
vulnerabilities, malware attacks and defenses. IEEE Access, 9:162401–162437,
2021.

[45] Openpilot ssh key security bypass. https://www.redpacketsecurity.com/
openpilot-ssh-key-security-bypass/, 2021.

[46] Sen Nie, Ling Liu, and Yuefeng Du. Free-fall: Hacking tesla from wireless to
can bus. Briefing, Black Hat USA, 25:1–16, 2017.

[47] Bo Luo, Mohamed Mosbah, Frédéric Cuppens, Lotfi Ben Othmane, Nora Cup-
pens, and SlimKallel. Risks and Security of Internet and Systems: 16th International
Conference, CRiSIS 2021,, volume 13204. Springer Nature, 2022.

[48] Andy Greenberg. Hackers remotely kill a jeep on the highway—with me in it.
Wired, 2015.

[49] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, et al. Experimental security analysis of a modern automobile.
In 2010 IEEE symposium on security and privacy, pages 447–462, 2010.

[50] comma connect. https://www.comma.ai/connect.
[51] Installing a fork of openpilot with workbench. https://medium.com/@jfrux/

installing-a-fork-of-openpilot-with-workbench-de35e9388021.
[52] Mahmoud Hashem Eiza and Qiang Ni. Driving with sharks: Rethinking con-

nected vehicles with vehicle cybersecurity. IEEE Vehicular Technology Magazine,
12(2):45–51, 2017.

[53] Sofiane Lagraa, Maxime Cailac, Sean Rivera, Frédéric Beck, and Radu State.
Real-time attack detection on robot cameras: A self-driving car application.
In 2019 Third IEEE International Conference on Robotic Computing (IRC), pages
102–109. IEEE, 2019.

[54] Daniel Rezvani. Hacking automotive ethernet cameras.
[55] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger

vehicle. Black Hat USA, 2015(S 91):1–91, 2015.
[56] Shahar Hoory, Tzvika Shapira, Asaf Shabtai, and Yuval Elovici. Dynamic adver-

sarial patch for evading object detection models. arXiv:2010.13070, 2020.

https://www.sae.org/blog/sae-j3016-update
https://www.tesla.com/autopilot
https://comma.ai/openpilot
https://developer.apollo.auto/
https://caradas.com/adas-cameras/
https://caradas.com/adas-cameras/
https://blog.comma.ai/how-to-write-a-car-port-for-openpilot
https://blog.comma.ai/how-to-write-a-car-port-for-openpilot
https://github.com/commaai/openpilot/blob/master/docs/CARS.md
https://github.com/commaai/openpilot/blob/master/docs/CARS.md
https://data.consumerreports.org/reports/cr-active-driving-assistance-systems/
https://data.consumerreports.org/reports/cr-active-driving-assistance-systems/
https://github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/selfdrive/modeld/models
https://github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/selfdrive/modeld/models
https://www.linkedin.com/pulse/cybersecurity-risks-hi-tech-autonomous-electric-vehicles-samrat-seal/
https://www.linkedin.com/pulse/cybersecurity-risks-hi-tech-autonomous-electric-vehicles-samrat-seal/
https://www.redpacketsecurity.com/openpilot-ssh-key-security-bypass/
https://www.redpacketsecurity.com/openpilot-ssh-key-security-bypass/
https://www.comma.ai/connect
https://medium.com/@jfrux/installing-a-fork-of-openpilot-with-workbench-de35e9388021
https://medium.com/@jfrux/installing-a-fork-of-openpilot-with-workbench-de35e9388021

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

[57] Amirhosein Chahe, Chenan Wang, Abhishek Jeyapratap, Kaidi Xu, and Lifeng
Zhou. Dynamic adversarial attacks on autonomous driving systems. arXiv
preprint arXiv:2312.06701, 2023.

[58] Giulio Lovisotto, Henry Turner, Ivo Sluganovic, Martin Strohmeier, and Ivan
Martinovic. SLAP: Improving physical adversarial examples with short-lived
adversarial perturbations. In 30th USENIX Security Symposium (USENIX Security
21), pages 1865–1882, 2021.

[59] Yanmao Man, Raymond Muller, Ming Li, Z Berkay Celik, and Ryan Gerdes.
That person moves like a car: Misclassification attack detection for autonomous
systems using spatiotemporal consistency. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 6929–6946, 2023.

[60] Chen Ma, Ningfei Wang, Qi Alfred Chen, and Chao Shen. Wip: Towards the
practicality of the adversarial attack on object tracking in autonomous driving.
In ISOC Symposium on Vehicle Security and Privacy (VehicleSec), 2023.

[61] Openpilot: An overview and the port to the honda clarity: Hard-
ware. https://wirelessnet2.medium.com/openpilot-an-overview-and-the-port-
to-the-honda-clarity-16341d53c9aa, 2020.

[62] Abu Hasnat Mohammad Rubaiyat, Yongming Qin, and Homa Alemzadeh. Exper-
imental resilience assessment of an open-source driving agent. In IEEE Pacific
rim international symposium on dependable computing, pages 54–63, 2018.

[63] Saurabh Jha, Subho Banerjee, Timothy Tsai, Siva KS Hari, Michael B Sullivan,
Zbigniew T Kalbarczyk, Stephen W Keckler, and Ravishankar K Iyer. Ml-based
fault injection for autonomous vehicles: A case for bayesian fault injection. In
2019 49th annual IEEE/IFIP international conference on dependable systems and
networks (DSN), pages 112–124, 2019.

[64] Mehrdad Moradi, Bentley James Oakes, Mustafa Saraoglu, Andrey Morozov,
Klaus Janschek, and Joachim Denil. Exploring fault parameter space using
reinforcement learning-based fault injection. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-
W), pages 102–109, 2020.

[65] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In International conference on machine learning, pages 3319–3328,
2017.

[66] Nancy Leveson and John Thomas. An stpa primer. Cambridge, MA, 2013.
[67] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

[68] Richard Schram, Aled Williams, and Michiel van Ratingen. Implementation
of autonomous emergency braking (aeb), the next step in euro ncap’s safety
assessment. ESV, Seoul, 2013.

[69] UN Regulation No 152 – Uniform provisions concerning the approval of motor
vehicles with regard to the Advanced Emergency Braking System (AEBS) for
M1 and N1 vehicles [2020/1597]. http://data.europa.eu/eli/reg/2020/1597/oj,
2020.

[70] GRVA-12-50r1e.pdf. https://unece.org/sites/default/files/2022-01/GRVA-12-
50r1e.pdf.

[71] Turki Alsuwian, Rana Basharat Saeed, and Arslan Ahmed Amin. Autonomous
Vehicle with Emergency Braking Algorithm Based on Multi-Sensor Fusion and
Super Twisting Speed Controller. Applied Sciences, 12(17):8458, August 2022.

[72] Eric Shi. Openpilot: An overview and the port to the honda clarity: Hard-
ware. https://wirelessnet2.medium.com/openpilot-an-overview-and-the-port-
to-the-honda-clarity-16341d53c9aa.

[73] Panda. https://github.com/commaai/panda.
[74] Wassim G Najm, John D. Smith, Mikio Yanagisawa, and John A. Volpe National

Transportation Systems Center (U.S.). Pre-crash scenario typology for crash
avoidance research. Technical Report DOT-VNTSC-NHTSA-06-02, April 2007.

[75] Wikipedia. Norm. https://en.wikipedia.org/wiki/Norm_(mathematics) .
[76] Zhou Wang and Alan C Bovik. A universal image quality index. IEEE signal

processing letters, 9(3):81–84, 2002.
[77] BMW 3 Series Dimensions. https://www.carsguide.com.au/bmw/3-series/car-

dimensions/2021, 2021.
[78] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. To-

wards the science of security and privacy in machine learning. arXiv:1611.03814,
2016.

[79] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. In Artificial intelligence safety and security, pages 99–112.
Chapman and Hall/CRC, 2018.

[80] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
arXiv:1706.06083, 2017.

[81] Ke Xu, Yao Xiao, Zhaoheng Zheng, Kaijie Cai, and Ram Nevatia. PatchZero:
Defending against Adversarial Patch Attacks by Detecting and Zeroing the
Patch. In IEEE/CVF Winter Conference on Applications of Computer Vision, pages
4621–4630, January 2023.

[82] Zitao Chen, Pritam Dash, and Karthik Pattabiraman. Jujutsu: A Two-stage
Defense against Adversarial Patch Attacks on Deep Neural Networks. In Pro-
ceedings of the ACM Asia Conference on Computer and Communications Security,
pages 689–703. ACM, July 2023.

[83] Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chellappa, and Soheil Feizi.
Segment and Complete: Defending Object Detectors against Adversarial Patch
Attacks with Robust Patch Detection. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14953–14962. IEEE, June 2022.

[84] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. Patch-
guard: A provably robust defense against adversarial patches via small receptive
fields and masking. In 30th USENIX Security Symposium, pages 2237–2254, 2021.

[85] R Spencer Hallyburton, Yupei Liu, Yulong Cao, Z Morley Mao, and Miroslav
Pajic. Security analysis of camera-lidar fusion against black-box attacks on
autonomous vehicles. In 31st USENIX Security Symposium (USENIX Security 22),
pages 1903–1920, 2022.

[86] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv:1412.6572, 2014.

[87] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: a simple and accurate method to fool deep neural networks. In IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[88] Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Goldstein. Making an
invisibility cloak: Real world adversarial attacks on object detectors. In Computer
Vision-ECCV, pages 1–17, 2020.

[89] Takami Sato, Yuki Hayakawa, Ryo Suzuki, Yohsuke Shiiki, Kentaro Yoshioka,
and Qi Alfred Chen. WIP: Practical Removal Attacks on LiDAR-based Object
Detection in Autonomous Driving. In Inaugural International Symposium on
Vehicle Security & Privacy, 2023.

[90] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. Drift with devil:
Security of multi-sensor fusion based localization in high-level autonomous
driving under gps spoofing. In Proceedings of the 29th USENIX Conference on
Security Symposium, pages 931–948, 2020.

[91] Rony Komissarov and Avishai Wool. Spoofing attacks against vehicular fmcw
radar. In Proceedings of the 5th Workshop on Attacks and Solutions in Hardware
Security, pages 91–97, 2021.

[92] Takami Sato, Sri Hrushikesh Varma Bhupathiraju, Michael Clifford, Takeshi
Sugawara, Qi Alfred Chen, and Sara Rampazzi. WIP: Infrared Laser Reflection
Attack Against Traffic Sign Recognition Systems. In Proceedings Inaugural
International Symposium on Vehicle Security & Privacy, 2023.

[93] Aolin Ding, Praveen Murthy, Luis Garcia, Pengfei Sun, Matthew Chan, and
Saman Zonouz. Mini-me, you complete me! data-driven drone security via dnn-
based approximate computing. In 24th International Symposium on Research in
Attacks, Intrusions and Defenses, pages 428–441, 2021.

[94] BowenWeng, Minghao Zhu, and Keith Redmill. A formal safety characterization
of advanced driver assist systems in the car-following regime with scenario-
sampling. IFAC-PapersOnLine, 55 no.24:266–272, 2022.

[95] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.
Dbscan revisited, revisited: why and how you should (still) use dbscan. ACM
Transactions on Database Systems (TODS), 42(3):1–21, 2017.

[96] John Hunt and John Hunt. Monkey patching and attribute lookup. A Beginners
Guide to Python 3 Programming, pages 325–336, 2019.

[97] ADAS user study. https://drive.google.com/file/d/
1GtMQpmgIzu4ZcjRbYKQfdE1q8WEEYPue/view?usp=sharing.

[98] Qualtrics. https://www.qualtrics.com/.
[99] Ildar Urazghildiiev, Rolf Ragnarsson, Pierre Ridderstrom, Anders Rydberg, Eric

Ojefors, Kjell Wallin, Per Enochsson, Magnus Ericson, and Gran Lofqvist. Ve-
hicle classification based on the radar measurement of height profiles. IEEE
Transactions on intelligent transportation systems, 8(2):245–253, 2007.

[100] Harald Schafer, Eder Santana, Andrew Haden, and Riccardo Biasini. A commute
in data: The comma2k19 dataset. arXiv:1812.05752, 2018.

A Sensor Fusion
We implement a radar sensor in the CARLA simulator and feed
the data to the OpenPilot radar interface [94], to be used as an
independent input by the fusion module. Specifically, we use the
DBSCAN algorithm [95] to cluster the 2D point map of the relative
distance and speed of perceived objects from the radar sensor and
feed their mean values to OpenPilot, which are then further filtered
and processed for fusion.

Fig. 16 (Top) shows an example of predictions of the relative
distance to the lead vehicle from the fusion of the camera and radar
measurements. We see that the radar and camera predictions agree
well most of the time. Also, the error between the fusion predic-
tions and the ground truth relative distance (based on positions
of vehicles in the simulator) becomes smaller as the Ego vehicle
approaches the lead vehicle (an RMSE of 0.81m after 3,000 control

https://wirelessnet2.medium.com/openpilot-an-overview-and-the-port-to-the-honda-clarity-16341d53c9aa
https://wirelessnet2.medium.com/openpilot-an-overview-and-the-port-to-the-honda-clarity-16341d53c9aa
http://data.europa.eu/eli/reg/2020/1597/oj
https://unece.org/sites/default/files/2022-01/GRVA-12-50r1e.pdf
https://unece.org/sites/default/files/2022-01/GRVA-12-50r1e.pdf
https://wirelessnet2.medium.com/openpilot-an-overview-and-the-port-to-the-honda-clarity-16341d53c9aa
https://wirelessnet2.medium.com/openpilot-an-overview-and-the-port-to-the-honda-clarity-16341d53c9aa
https://github.com/commaai/panda
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://www.carsguide.com.au/bmw/3-series/car-dimensions/2021
https://www.carsguide.com.au/bmw/3-series/car-dimensions/2021
https://drive.google.com/file/d/1GtMQpmgIzu4ZcjRbYKQfdE1q8WEEYPue/view?usp=sharing
https://drive.google.com/file/d/1GtMQpmgIzu4ZcjRbYKQfdE1q8WEEYPue/view?usp=sharing
https://www.qualtrics.com/

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

cycles in the figure). Sensor fusion also helps reduce the errors in
fusion predictions under attacks as shown in Fig. 16 (Bottom) and
discussed in Section 6.2, even though it fails to prevent collisions
in the end.

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
0

20

40

60

80

Re
la

tiv
e

 D
ist

an
ce

(m
)

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
Time (Step: 10ms)

0

20

40

60

80

Re
la

tiv
e

 D
ist

an
ce

(m
) Camera

Radar
Attack Start Time
Fusion
GroundTruth

Figure 16: An example fusion of relative distance predictions based
on camera and radar data compared with the ground truth under
normal operation (Top) or under attack (Bottom).

B Malware Installation
Fig. 17 shows an example set of steps taken for establishing remote
access and downloading a malicious code repository on a vehicle
running OpenPilot, the open-source production ACC system from
Comma.ai [8]. To change live camera image frames at runtime, we
use a technique called monkey patching in Python, which is used
for dynamically modifying or extending the behavior of an existing
code at runtime or hooking a function without changing the source
code[96]. For example, as shown in Fig. 17, the send() system library
called by the camera call back function for sending the received
camera frames to the DNN model can be wrapped by a malicious
version adv_send() that implements the attack.

1. Scan and identify device IP
2. Get access credential (SSH Key)
3. Establish remote connection:

ssh comma@device_IP

4. Clone code from remote repo
5. Reboot the device

81

Malicious code address

def lib_send(…)
…

def cam_callback(image):
…
dat[‘image’] = Image
pm.send(

“roadCameraState”, dat)

import cereal.messaging.PubMaster
def adv_send(s: str, dat: Union[bytes]):

Trigger=GetContextInference(dat)
if Trigger and ‘Camera’ in str:

patch=CA-Opt(dat[‘image’]);
dat[‘image’] += patch

return lib_send(s,dat)
#hook adversarial function into original send
cereal.messaging. PubMaster.send=adv_send

Figure 17: An example of malware installation (Top) and malicious
code execution using monkey patching technique (Bottom).

C AEBS Evaluation
For a realistic implementation of AEBS in our simulation platform,
we study the AEBS design of typical OpenPilot-supported car mod-
els [32]. Our AEBS design relies on the fusion of camera and radar

Table 9: AEBS design in OpenPilot-supported car models.

Car Model [32] Is AEBS using Radar/Camera/Both

Acura RDX 2018 Both
Buick LaCrosse 2019 Camera or both
Cadillac Escalade 2017 Radar or camera and ultrasonic sensors
GMC Acadia 2018 Camera and/or radar
Honda Pilot 2022 Both
Honda Ridgeline 2023 Both
Lexus ES Hybrid 2023 Both
Lexus IS 2023 Both
Toyota Avalon Hybrid 2022 Both
Toyota Camry 2023 Both

Table 10: Driving scenarios to test the AEBS with different initial
distances (𝐼𝑛𝑖𝑡_𝑑𝑖𝑠𝑡) between the Ego vehicle and the lead vehicle.

Lead vehicle 𝐼𝑛𝑖𝑡_𝑑𝑖𝑠𝑡 (m) 𝑉𝐸𝑔𝑜 (km/h) 𝑉𝐿𝑒𝑎𝑑 (km/h)

Stationary 100, 100, 150 20, 42, 58 0
Moving 100, 150 30, 58 20

data, as mentioned in Appendix A, aligning with AEBS design of
most current OpenPilot-supported car models, as shown in Table 9.

Following the testing protocol specified in [69], we employ two
categories and five driving scenarios (see Table 10) to assess our
AEBS functionality (Section 4). Each scenario is repeated 100 times
to ensure reliable outcomes. Experimental results show that in
all five testing scenarios, both FCW and AEB alerts are activated,
effectively preventing all hazards or collisions. On average, it takes
about 1.68 seconds for AEB to stop the Ego vehicle completely.

D Stealthiness User Study
We conduct a user study [97] to further evaluate the advantages of
the stealthiness design of our attack. Before recruiting participants,
we secured Institutional Review Board (IRB) approval. Our study
explicitly avoided collecting any personally identifying information,
targeting sensitive populations, or introducing any risks to the
participants. Our study included 30 participants who were asked
to sit on the driver’s side of an autonomous vehicle, parked in a
parking lot, equipped with OpenPilot ADAS (see Section 2.3). Each
participant went through different trials of pre-recorded videos
displayed on the ADAS monitor and answered a series of questions
after each trial using a Qualtrics survey [98]. All participants had
driving experience, and 40% of them had AV driving experience.

At the beginning of the study, we provide an introduction of
ADAS and present demo videos on the ADAS monitor to ensure
that the participants fully understand what driving technology we
are surveying.

Driving Preferences.Wefirst ask participants to envision them-
selves driving this autonomous vehicle with the ADAS monitor
displaying pre-recorded image frames. We inquire about how often
they would look at the ADAS monitor while driving and whether
alterations in the monitor’s position and size influence their prefer-
ence. User study results in Fig. 18 show that 99% of the participants
prefer looking at the ADAS monitor during their driving experi-
ence, with 33% specifying they would do so for the majority of
the driving duration. Moreover, 60% of the participants indicate a
preference for a larger monitor size or a more prominent position.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhou et al.

Figure 18: Results of participants’ preference of looking at the ADAS
monitor during driving and whether they would look more often at
the monitor with a larger size or in a noticeable position.

These results indicate that the driver might notice the camera input
attacks and stealthiness design might be beneficial for these attacks
to evade driver intervention.

Stealthiness. We create five video sets by introducing adver-
sarial patches into a pre-recorded highway scenario using CA-
Random, CA-APGD, and CA-Opt methods with three stealthiness
levels (𝜆 = 10−4, 𝜆 = 10−3, 𝜆 = 10−2, as detailed in Section 5.3.1).
We present these videos on the ADAS monitor and ask participants
whether they notice any abnormal scenarios that prompt them to
assume control of the vehicle to avoid potential risk or danger. For
a detailed examination, we extract an image frame from each video
at the same frame index and zoom in to reveal more intricate details,
followed by posing identical questions to the participants.

Figure 19: Results of stealthiness of each attack method.

User study results are illustrated in Fig. 19. It is evident that
patches generated by the CA-Random attack are conspicuous to
the majority of participants (>75%), whether observed in images or
videos. In comparison, patches generated by the CA-APGD exhibit
lower visibility than those produced by the CA-Random attacks.
In CA-Opt attacks, the takeover rate diminishes with a rise in
stealthiness level or 𝜆 value. Specifically, when 𝜆 is set at 10−2 and
10−3, the takeover rates are below 20% for patch images and are 0%
for patch videos. These findings suggest adversarial patches at 𝜆 =
10−2 and 𝜆 = 10−3 exhibit nearly imperceptible characteristics to
human drivers, particularly in image frames when not zoomed in.

Physical Attack. We also investigate the stealthiness of physi-
cal adversarial patches as perceived by human eyes. Participants
are shown an image of an adversarial patch generated through
a physical attack method introduced in a prior work [16]. They
are then asked identical questions. Our findings reveal a takeover
rate of 80%, highlighting the inadequacy of physical patches in
achieving stealthiness and evading human detection.

E Evaluation of Fake Video Attacks
To further evaluate the necessity of a stealthy patch attack, we
conduct another camera attack experiment by fake video injection.

Video Recording. An Ego vehicle is configured to cruise at
40mph from 75 meters away behind a lead vehicle cruising at 35

mph in CARLA simulator. We record the image frames captured by
the camera on the Ego vehicle with a duration of 50 seconds. We
select a portion of the recorded image frames (7 seconds) within a
straight road area to be injected at runtime.

Fake Video Attack.We rerun the simulations for each scenario
introduced in Section 5.1 and replace the real-time camera frames
with the selected fake video when the Ego vehicle approaches a
similar position indicated by the fake video. Experimental results
show that this attack causes hazards in 100% simulations and in
72.6% of simulations the Ego vehicle drives to the neighbor lane
without any collisions. This is because lane lines in the fake video
do not exactly overlap with the ones in the actual video.

Therefore, we compare the recorded video to the real-time image
frame captured by the Ego vehicle under attacks frame by frame
and select the attack start time such that the fake image frame
almost matches the real-time image frame (note that this selection
of perfect match at runtime attack might be impossible). We rerun
the simulations and experimental results show that the perfect fake
video attack achieves a success rate of 95.1% in colliding with the
lead vehicle or side objects (e.g., road guard). The lower success
rate of fake video attacks compared to the CA-Opt attack (100%,
as shown in Fig. 9) might be due to the difference between attack
start times. We do not apply the context-aware strategy to fake
video attacks since it determines the attack start time dynamically
at runtime, and it is challenging to select a fake image frame that
perfectly matches the image frame at the time inferred by context-
aware strategy at runtime.

Observation. Implementing a stealthy fake video attack is chal-
lenging as the attacker does not know the lanes the Ego vehicle
will drive in the future, the positions and colors of surrounding
vehicles, or the weather and road conditions. So, these differences
between the fake video and the actual environment might trigger
safety interventions and lead to mitigation of the attack.

Due to such differences, fake video attacks can be easily detected
by existing methods that monitor the differences between two
consecutive image frames. An example of image frame changes
during a perfect fake video attack is shown in Fig. 20. Even if the
fake videos are recorded using the same camera on the Ego vehicle
driving in the same lane and weather conditions with only one
lead vehicle (resembling replay attacks), an alert human driver can
still notice the changes in the lead vehicle’s position and size. An
example of the RMSE and UIQ [76] between two consecutive image
frames is shown in Fig. 21. We see that the similarity between the
first frame of the fake video and the last frame of the benign video
is much lower than that between other consecutive frames.

Fake Video Attack with Safety Interventions. To further
evaluate the performance of fake video attacks with safety mecha-
nisms, we rerun the experiments by launching the proposed driver

Figure 20: An example of two consecutive images before (Left) and
after (Right) fake video attack.

Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Figure 21: Similarity of two consecutive image frames with CA-Opt
attack and fake video attack (starting at 69th frame) measured in
RMSE and universal image quality index (UIQ) [76].

intervention 2.5 seconds (average reaction time) after the attack.
Experimental results show that all the attacks are successfully pre-
vented. Therefore, we do not further test the fake video attack while
enabling AEBS and constraint checking (see Section 4).

F Robustness to Real-world Factors
To assess attack robustness, we vary front camera height based
on standard passenger car profiles from manufacturers [99]. We
perform our experiments with four heights between 1.1-1.7 meters
and three initial distances (50m, 75m, 100m). Fig. 22 illustrates the
100% success rate of our CA-Opt attack across 12 testing scenarios.
The Ego vehicle initially maintains a safe following distance, de-
viates from it around the 2,500-3,000 control cycle or step due to
the adversarial patch, and eventually collides with the lead vehicle.
These results demonstrate our attack is robust to different camera
positions and initial longitudinal distances and can cause safety
hazards. We also test our attacks with diverse weather (rainy, sunny,
or cloudy) and lighting conditions (noon or sunset). Results show
that our CA-Opt attack causes longitudinal deviations of 9.8-14.3m
in the predicted lead vehicle position, while maintaining a success
rate of 100% under such conditions.

G Runtime Overhead
To further assess our attack’s real-world applicability, we measured
its runtime overhead on a Comma3 device. We parked the Ego
vehicle, equipped with OpenPilot and our attack malware, behind

Figure 22: Actual relative distance trajectories under CA-Opt attack
with different camera heights (H1:1.1m, H2:1.3m, H3:1.5m, H4:1.7m)
and initial longitudinal distances to the lead vehicle (L1:50m, L2:75m,
L3:100m). An actual relative distance of zero indicates collision.

Overhead time
73

Img1 Img3Img2

Perception&

Prediction

Attribution&

Optimization

&Update

Object

Detection

Img Frame

(20Hz)

Time

(ms)0 (Attack start time) 50 100

Img1

Faulty

Img1

Faulty

Img2

Faulty

Img1

Faulty

Img3

Figure 23: Runtime overhead of each step of the attack.

a lead vehicle in a parking lot, activating the ACC function with a
cruise speed set to 0 mph. We record the time overhead for each
component, as shown in Fig. 23, and report the average value over
5,000 control cycles.

Experimental results show that the time overhead introduced
by the context inference component before activating the attacks
is minimal (1.17 us). Following the activation of attacks, the time
overhead for the object detection module is about 10.1 ms on aver-
age. Note that some production ADAS provide object detection and
tracking features, so this overhead time could be potentially avoided.
We also observe that the primary attribution algorithm [65] does
not add significant overhead, leveraging gradients calculated during
the patch optimization process. The total time overhead is 1.52 ms.

H Testing on a Real-world Dataset.
We perform an evaluation using the comma2k19 dataset [100], a
publicly available dataset with over 33 hours of California’s 280
highway commute. The dataset comprises 2019 segments, each
lasting one minute, covering a 20km highway section, collected
using OpenPilot hardware. From this dataset, we choose 200 videos
with a clear view of the lead vehicle and a relative distance of less
than 100 meters. These videos are fed into the DNNmodel to record
predictions for relative distance (considered as ground truth). We
then introduce adversarial patches, generated by different attack
methods, into the videos. The manipulated videos are fed into the
DNNmodel, and predictions for relative distance are compared with
those from videos without any attacks, using metrics like average
and standard deviations in the predicted longitudinal distance.

Table 11 compares the CA-Opt attack with CA-Random for dif-
ferent distances between the Ego and lead vehicles. CA-Random
has an average deviation of 0.15m, which does not significantly
impact ACC system outputs or cause hazards as the ACC system
typically keeps a following distance larger than 4 meters in the
absence of attacks. In contrast, when the Ego vehicle is close to the
lead vehicle (less than 20m), CA-Opt achieves the highest deviation
of 18.65m, showcasing the effectiveness of the proposed objective
function (Section 3.3.2) in generating optimal perturbations with
substantial impact.

Table 11: Performance in deviating DNN-based lead vehicle position
predictions using comma2k19 dataset.

Attack Metric Longitudinal Deviation in DNN Prediction (m)

0-20 20-40 40-60 60-80 80+ All

CA-Random Avg. 0.70 0.41 0.28 0.99 0.08 0.15
Std 0.69 1.03 1.44 1.93 2.67 2.56

CA-Opt Avg. 18.65 16.15 14.52 8.65 3.73 4.91
Std 6.96 4.83 4.95 2.82 3.03 3.35

	Abstract
	1 Introduction
	2 ADAS Overview
	2.1 Adaptive Cruise Control (ACC)
	2.2 ADAS Safety Mechanisms
	2.3 OpenPilot

	3 Runtime Context-Aware Perception Attack
	3.1 Attack Model
	3.2 Attack Challenges
	3.3 Attack Design

	4 Safety Intervention Simulation
	5 Evaluation in Simulated Environment
	5.1 Methodology
	5.2 Attack Success Rate in Causing Hazards
	5.3 Attack Stealthiness with Safety Interventions
	5.4 Comparison to DNN Output and Control Output Attacks

	6 Evaluation in Real-World Settings
	6.1 Performance on Actual Vehicles
	6.2 Evading Existing Defense Methods

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Sensor Fusion
	B Malware Installation
	C AEBS Evaluation
	D Stealthiness User Study
	E Evaluation of Fake Video Attacks
	F Robustness to Real-world Factors
	G Runtime Overhead
	H Testing on a Real-world Dataset.

