CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

Ant Colony Optimization of Shortest Path and Traveling
Salesman

Harrison Naftelberg and Morgan McCarty

Notes

1. Shortest path was done in an attempt to use the least number of existing libraries possible
to view more specific implementation details relating towards graphs. TSP was done with
an existing graph implementation and ACO was built on top of that.

v Shortest Path

> Imports

[1Y 1cell hidden

v Global Constants

1 TRAIL_LAID = 10

2 PERSISTENCE = 0.95

3 ITERATIONS = 2000

4 ANT_MULTIPLIER = 1.0

v Node, Ant, Graph Classes

Implementation details

Nodes

Nodes are represented as an object which has a reference ID and a list of connections. Each
element in the list of connections is a tuple which has a Integer and a Float. The Integer is either
1 or 0 corresponding to "does connect" and "does not connect." The Float value is the phermone
value (later on the phermone is defaulted to 1 for connecting and 0 for non-connecting).

1 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

Ants

Ants are the main component for solving the problem. They have internal values corresponding
to the original point they began at, the goal point, the path they have taken (both as a set and a
list -> the set to ensure that no node is taken twice, and the list to record the path taken),
whether or not the ant is dead (locked out of any possible future paths or has already laid
phermone), and the amount of trail to lay over an entire path.

The Graph

The Graph is the problem to which the Ants find the solution. The code for the ACO is here as
the Ants live within this space. The graph is essentially just a list of nodes.

1 class Node():

2 """ Class representing a Node in the Graph the ants will solve
3 www

4

5 def _init__(self, id: int, connections: list):

6 """ Create a graph where:

7 - id is an integer representing the ID of the node

8 - connections is a 1list of tuples ((1 or @), phermone: Float)
9 W

10 self.id = id

11 self.connections = connections

12

13 def __repr_ (self):

14 """ Returns the String value of the Node

15 this is the id of the node followed by a list of the connections (-
16 o

17 return str(self.id) + " - " + str(self.connections)

18

19 def copy_connections(self):
20 """ Creates and returns shallow copy of the connections 1list
21 e
22 copy = []
23 for i in self.connections:
24 copy.append((1))
25 return copy
26
27 def update_persistence(self, persistence):
28 """ Updates the phermones of all connections within the graph by the per:
29 e
30 for i in range(len(self.connections)):
31 X, y = self.connections[i]
32 if y != None:
33 y *= persistence
34 self.connections[i] = (x, V)
35

2 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

36 def update_phermone(self, id: int, phermone: float):

37 """ Update the phermone on a specific edge

38 e

39 X, y = self.connections[id]

40 y += phermone

41 self.connections[id] = (x, V)

42

43 class Ant():

44 """ Class representing an Ant (which will solve the graph collectively)

45 v

46

47 def __init__(self, origin: Node, goal: Node, trail_laid = TRAIL_LAID):

48 """ Creates an Ant where:

49 - origin is the Node at which the Ant started

50 - goal is the Node to which the Ant wishes to travel

51 - trail_laid is the total amount of trail to lay on the resulting i
52 self.path is the list of the nodes which the Ant has taken up to and
53 self.current_node is the Node at which the Ant is located

54 self.nodes_seen is the set of all nodes which the Ant has traveled t«
55 self.dead is the current state of the Ant, if the Ant attempts to tre
56 not attempt to travel any further until the generation is reset

57 e

58 self.current_node = origin

59 self.origin = origin

60 self.goal = goal

61 self.nodes_seen = set()

62 self.nodes_seen.add(origin)

63 self.path = [origin]

64 self.dead = False

65 self.trail_laid = trail_1laid

66

67 def __repr__ (self):

68 """ Returns the String representation of the Ant

69 This is the length of the current path taken followed by the ID of
70 e

71 return f"{len(self.path)}-[{self.current_node.id}]" + ("DEAD" if self.de:
72

73 def get_phermone(self):

74 """ Returns the phermone value (Float) generated by this Ants path

75 This is equal to the TRAIL_LAID constant divided by the length of 1
76 o

77 return self.trail_laid / len(self.path)

78

79 def move(self, node: Node):

80 """ Attempts to move the Ant to the given Node - note this does not ensu:
81 (i.e. don't pass in a non-legal Node)

82

83 If the move is made successfully Returns True, otherwise Returns Fal:
84

85 A move is successful if:

86 - the Node is not None (this means we would want to travel nowhere

3 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

87 - the Node is not within the set of nodes visited so far

88 - the Ant is not dead (if the Ant is dead it can't move!)
89

90 When a successful move is made the Ant will update it current node, ¢
91 o

92 if node in self.nodes_seen:

93 return False

94 if node == None:

95 self.dead = True

96 return False

97 if self.dead:

98 return False

99 self.nodes_seen.add(node)

100 self.current_node = node

101 self.path.append(node)

102 if self.path_contains(self.origin.id) and self.path_contains(self.goal. ic
103 self.dead = True

104 return True

105

106 def path_contains(self, id: int):

107 """ Determines whether the Ant has traveled to the node asked
108 o

109 node_ids = [x.id for x in self.nodes_seen]

110 set_ids = set()

111 for i in self.nodes_seen:

112 set_ids.add(i.id)

113 return id in node_ids and id in set_ids

114

115 def str_abridged_path(self):

116 """ Returns the path as a string of IDs

117 e

118 ret = ""

119 for i in self.path:

120 ret = "-".join([ret, str(i.id)])

121 return ret

122

123 class Graph():

124 """ A class representing the Graph on which the Ants will travel
125 """

126

127 def __init_ (self, nodes: list):

128 """ Creates a Graph with:

129 - nodes being a list of Nodes contained by the graph

130

131 self.ants is a list of Ants that are currently searching the graph
132 e

133 self.nodes = nodes

134 self.ants = []

135

136 def __repr__(self):

4 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

5 of 25

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

" Returns the 5tring representation ot the Graph

This is the nodes in the graph as a block connected by newlines

I.et = nn
for i in self.nodes:
ret = "".join([ret, str(i), "\n"])

return ret

def make_ants(self, location: Node, goal: Node, trail_laid, ant_multiplier’
""" Adds ants to the list of Ants at the specified location
self.ants = []
for _ in range(int(len(self.nodes)*ant_multiplier)):
self.ants.append(Ant(location, goal, trail_laid))

def aco_path(self, to: int, fro: int, time: int, persistence=PERSISTENCE, 1
""" Applies the Ant Colony Optimization algorithm to the graph
self.make_ants(self.nodes[fro], self.nodes[to], trail_laid, ant_multiplic
best_path_so_far = []
best_phermone = 0.0
for _ in range(time): # O(time*n*n) -> 0(n”2): not the best time complex:

for i in self.nodes: # 0(n"2)
i.update_persistence(persistence) # 0(n)

for ant in self.ants: # O(n*)
if ant.dead:

continue

sorted_connections = ant.current_node.copy_connections()
sort the edges by the phermone levels
sorted_connections.sort(key=lambda x:x[1])

set to make sure that we don't attempt to go to the same node twice
indices_hit = set()

for sorted_index in range(len(sorted_connections)): # 0(n)
successful_move = False
connect, _ = sorted_connections[sorted_index]
convert indices for the sorted edges to their corresponding non-:
real_indices = [1 for i, tupl in enumerate(ant.current_node.connec

if connect ==
as all of these edges must have the same weight we will just ct
random.shuffle(real_indices)
for i in real_indices: # effectively 0(1) as we will only go to ¢
indices_hit.add (i)
if ant.move(self.nodes[i]):
successful_move = True
break
else:

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

6 of 25

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

all of these don't connect so we can just add the indices so we
for i in real_indices:
indices_hit.add (i)

if successful_move:
after every move one connection will be added, so if we now ha\
if ant.path_contains(to) and ant.path_contains(fro):
we want the best path so we will look at the score for the p:
path_found = ant.path
new_phermone = ant.get_phermone()
if new_phermone > best_phermone:
best_phermone = new_phermone
best_path_so_far = path_found
for i in range(l, len(ant.path)-1): # 0(n)
update the phermones for the connections from this node
self.nodes[i-1].update_phermone(i, new_phermone)
break

return best_path_so_far, best_phermone

v Convenience Function to run ACO

This is created to use the information create above to run ACO with different parameters and

arguments.

1 def ant_colony_optimization(node_origin: int, node_destination: int, node_cour

O oo JdOoOul b~ WN

[T T e T e i S G S e
S VWOWNOOUDAWNRLROS

21
22

-~

""" Runs the Ant Colony Optimization for Shortest Path on a new Graph
Prints out the resulting path (as node IDs connected by arrows)

Axgs:

- node_origin: the Integer ID value of the Node to start the path fror
- node_destination: the Integer ID value of the Node to end the path :
NOTE: node_origin cannot be the same value as node_destination

- node_count: the non-negative, non-zero Integer value for the number
- iterations: the Integer number of iterations to run ants over the g:
- persistence: the Float persistence of the trails laid by the ants [I
- ant_multiplier: the Float value by which the number of ants comparec
- trail_laid: the total Integer amount of phermone which one ant will
- seed: the random seed to be used to create the graph either an Intes
- print_graph: a Boolean value which dictates whether or not the grapt

assert(node_count > Q)
assert(node_origin != node_destination)

Set the seed

~

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

23 1T type(seed) == 1nt:

24 rng = numpy.random.default_rng(seed)
25 random.seed(seed)

26 else:

27 assert(seed == 'random')

28 rng = numpy.random.default_rng()

29

30 # Create the graph (adj matrix)
31 adjacency_matrix = rng.random((node_count, node_count))
32 for i in range(len(adjacency_matrix)):

33 for j in range(len(adjacency_matrix[i])):

34 adjacency_matrix[i][j] = (round(adjacency_matrix[i][]j], @))

35 if 1 == j

36 # we don't want the graph to have edges where both ends are on the sar
37 adjacency_matrix[i][]j] = @

38 for i in range(len(adjacency_matrix)):

39 for j in range(len(adjacency_matrix[i])):

40 if adjacency_matrix[i][j] == 1 and adjacency_matrix[j][i] != 1:

41 # this ensures that the graph is not directed (paths go both ways)
42 adjacency_matrix[j][i] = 1

43 adjacency_matrix_int = adjacency_matrix.astype("int64")

44

45 if print_graph:

46 print("Adjacency Matrix:")

47 print(adjacency_matrix_int)

48 print()

49

50 # Convert adjacency_matrix_int into Node objects
51 nodes = []
52 for i in range(len(adjacency_matrix_int)):

53 connections = []

54 for j in range(len(adjacency_matrix_int[i])):
55 connections.append((adjacency_matrix_int[i][j], 1.0) if adjacency_matri>
56 nodes.append(Node(i, connections))

57 graph = Graph(nodes)

58

59 if print_graph:

60 print("Graph:")

61 print(graph)

62 print()

63

64 result = graph.aco_path(node_destination, node_origin, iterations, persister
65

66 id_path = []

67

68 path, _ = result

69

70 for i in path:

71 id_path.append(str(i.id))

72

73 if path:

7 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab

8 of 25

74
75
76
77
78

piint(f"Path from Node-{node_origin} to Node-{node_destination}:")
print(("->".join(id_path)))

else:
print("Could not find a valid path!
print()

https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

(Try running more iterations)")

Example runs with varied arguments and varied parameters

1 ant_colony_optimization(2, 8, 18, print_graph=True)
2 ant_colony_optimization(1,
3 ant_colony_optimization(7,

Adjacency

[[e
[1
[1
[0
[0
[1
[0
[0
[1
[0
[1
[0
[1
[0
[0
[1
[0
[0

1

HFOOROROROORRRPRRLPELEREOR
PR ORPRPRPRPPRPOOOORRLOR

Graph:

OLo~NoOoupr~,WNEREOS
1

[(o,
[(1,
[(1,
[(o,
[(o,
[(1,
[(o,
[(o,
[(1,
[(o,

SRR RPRRPRPRPPRPRORRLPFLPOOORRELEO

[(1,
[(o,
[(1,
[(o,
[(o,
[(1,
[(0o,
[(o,

OrroOoorooRrRrFL,OS

OO0 FrRroOoOo0rRrOo -

M
0
1
1
0
0
1
1
1
1
1
1
1
0
1
1
0
1
1

a

[(SES IS SSRGS E SRS RS

[SES IS

- ~ ~

(SIS

~ ~ ~

=

SR ORRPRRPRREPRRLPRRLPROFROROORR
PP OO RPRPORORRPRORRPLPERPLPOR O H

~ ~ - ~

~

~ ~ ~

-

S

~

S

~

><

PR P RPRORFPOOORORORRLPORLOS -
PR PR RPRPRORRPORRLRRPRPEPEPL,OOR
PO R R RPRORFLPOROORRLPRORLOS
OCR OO RRPRORRORRERRERRLRRLRRLRR

(SR T Y G SR I Ry R

PO R R RPPRPORRLPORORRLPRLELOS
T S Y S G S QG e O J T S G Y

.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),

S IS S R R S R

.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),

2, 10)
22, 30,

SRR RORFRPORRLRORRPRRLRRLERLOO

(1,
(0,
(1,
(1,
(0,
(0,
(0,
(0,
(1,
(1,
(1,
(1,
(1,
(0,
(1,
(0,
(1,

B SIS IS I O e O

PO RO RRFR R -

PP PRPORPRPPRPORPRRPPRPORPRRLEPLPORO
ORrORRPRPRPORRLRRLPOOOORRLROR
OCORRPRRPRPORORRREPRLEPRLERLOOS

[(SES IS SSRGS I SIS RS

(SIS

- ~ ~

(SIS

~ ~ ~

~ ~ - ~

~

~ ~ ~

-

S

~

S

~

iterations=50, persistence=0.8,

0]
1]
1]
0]
1]
0]
1]
1]
1]
1]
0]
1]
1]
0]
1]
0]
0]
0]]

SOrRrFRPFRPOO0OOORFRL,FL,OS

.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),

SR RRERLRRRER

.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),

(0,
(1,
(1,
(0,
(0,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(0,
(1,
(1,
(0,
(1,
(1,

PR RPRPPRPOORRLO

PP ORERPO R -

[(SES IS SSRGS I SIS RS

~

-

~

~

~

~

~

~

-

.0),

S

S

S

S

S

S

S

PP OFRORFROO R R

.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),

1

OROR R

.0),
.0),
.0),
.0),
.0),
.0),
.0),
.0),

ant_multip:
(0, 0.0), (0,
(1, 1.0), (1,
(0, 0.0), (o,
(1, 1.0), (1,
(1, 1.0), (1,
(1, 1.0), (o,
(0, 0.0), (1,
(1, 1.0), (o,
(1, 1.0), (1,
(0, 0.0), (o,
(1, 1.0), (¢
(6, 0.0), (1
(1, 1.0), (1
(1, 1.0), (¢
(0, 0.0), (1
(6, 0.0), (1
(1, 1.0), (1
(1, 1.0), (1

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab

9 of 25

Path from Node-2 to Node-8:
2->9->8

Path from Node-1 to Node-2:
1->2

Adjacency
[[011
[1
[1
[1
[1
[1
[0
[1
[1
[1

[}

N SIS I S RSy
I S I Gy S R S I S R

L o W S SRS S IS B S B SR
RFORRPORRRLOR A
ORPrOOORRPRRPRPLPOS H
|—\|—\®®|—\®|—\®|—\»—\-><-
PR PR OO RRLO R
ORRORRLERERRERE
OO RO R RPROR LKL
RFORRPRRPRPPRLROOS
PR RPORRPLPRPLORL
PR ORORRPROROS
PP OO R RPRRPRRPLOS

1 # change in persistence does not
2 %time ant_colony_optimization(0,
3 %time ant_colony_optimization(Q,
4 %time ant_colony_optimization(@,
5 %time ant_colony_optimization(0,

Path from Node-©@ to Node-16:
0->16

PR OO ROROR
PR P PO RRPLBEL R
PR R OROOR R
[SJEEEEY Y RS G S I Y

https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

have an

16,
16,
16,
16,

20,
20,
20,
20,

CPU times: user 1.13 s, sys: 1.43 ms, to

Wall time: 1.14 s
Path from Node-@ to Node-16:
0->16

101111111
111211111
01111111
111011000
111111001
111110101
010111101
11111011
111011100
00111111

effect on small graphs

persistence=0.1)
persistence=0.5)
persistence=0.8)
persistence=2.0)

tal: 1.13 s

CPU times: user 1.12 s, sys: 108 ps, total: 1.12 s

Wall time: 1.13 s
Path from Node-©@ to Node-16:
0->16

CPU times: user 1.08 s, sys: 797 ps, total: 1.08 s

Wall time: 1.08 s
Path from Node-@ to Node-16:
0->16

CPU times: user 1.12 s, sys: @ ns, total: 1.12 s

Wall time: 1.12 s

PO RRPRRPRPRERPLPRPLOR

1]
0]
0]
0]
0]
1]
1]
1]
1]
1]

1 # change in persistence had a large effect once it became larger in large graj

2 %time ant_colony_optimization(Q,
3 %time ant_colony_optimization(0,
4 %time ant_colony_optimization(@,
5 %time ant_colony_optimization(0,
6 %time ant_colony_optimization(0,

16,
16,
16,
16,
16,

100,
100,
100,
100,
100,

persistence=0.1)
persistence=0.5)
persistence=0.8)
persistence=2.0)
persistence=4.0)

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab

10 of 25

https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

1 # change in trail_laid has zero effect (as expected because its porportional f
2 %time ant_colony_optimization(@, 12, 20, trail_laid=1000)
3 %time ant_colony_optimization(@, 12, 20, trail_laid=100)
4 %time ant_colony_optimization(@, 12, 20, trail_laid=10)

5 %time ant_colony_optimization(@, 12, 20, trail_laid=1)

Path from Node-@ to Node-12:

0->12

CPU times:
Wall time:

Path from
0->12

CPU times:
Wall time:

Path from
0->12

CPU times:
Wall time:

Path from
0->12

user 225
226 ms
Node-0 to

user 235
238 ms
Node-0 to

user 238
242 ms
Node-0 to

ms, sys:

Node-12:

ms, sys:

Node-12:

ms, sys:

Node-12:

999 ps, total: 226 ms

® ns, total: 235 ms

2 ms, total: 240 ms

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab

11 of 25

CPU times:
Wall time:

user 245
246 ms

ms, Sys:

https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

® ns, total: 245 ms

1 # change in ant_multiplier has zero effect on small graphs
2 %time ant_colony_optimization(@, 12, 20, ant_multiplier=100)
3 %time ant_colony_optimization(@, 12, 20, ant_multiplier=1)
4 %time ant_colony_optimization(@, 12, 20, ant_multiplier=0.5)
5 %time ant_colony_optimization(@, 12, 20, ant_multiplier=0.1)

Path from Node-0 to Node-12:

0->12

CPU times:
Wall time:

Path from
0->12

CPU times:
Wall time:

Path from
0->12

CPU times:
Wall time:

Path from
0->12

CPU times:
Wall time:

user 222
225 ms
Node-0 to

user 232
233 ms
Node-0 to

user 224
227 ms
Node-0 to

user 233
235 ms

ms, Sys:
Node-12:
ms, Sys:
Node-12:
ms, Sys:
Node-12:
ms, Sys:

3.01 ms, total: 225 ms

4 ps, total: 232 ms

2 ms, total: 226 ms

2 ms, total: 235 ms

1 #no real change for large graph either

2 %time ant_colony_optimization(@, 12, 100, ant_multiplier=100)
3 %time ant_colony_optimization(@, 12, 100, ant_multiplier=1)

4 %time ant_colony_optimization(@, 12, 100, ant_multiplier=0.5)
5 %time ant_colony_optimization(@, 12, 100, ant_multiplier=0.1)

6

7 %time ant_colony_optimization(@, 16, 100, ant_multiplier=100)
8 %time ant_colony_optimization(@, 16, 100, ant_multiplier=1)

9 %time ant_colony_optimization(@, 16, 100, ant_multiplier=0.5)
10 %time ant_colony_optimization(@, 16, 100, ant_multiplier=0.1)

Path from Node-@ to Node-12:

0->12

CPU times:
Wall time:
Path from Node-@ to Node-12:

0->12

CPU times:
Wall time:

Natle Looa.a.

user 7.51 s, sys:

7.52 s

user 7.44 s, sys:

7.47 s

NModo N -

RMaodo an.

14 ms, total: 7.52 s

17 ms, total: 7.46 s

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab

FdLlll 1L0Mm NOUe-v LO NoOue-14.

0->12

CPU times: user 7.4 s,

Wall time: 7.42 s

Path from Node-@ to Node-12:

0->12

CPU times: user 7.39 s, sys:

Wall time: 7.41 s

Path from Node-@ to Node-16:

0->88->16

CPU times: user 30.5 s, sys:

Wall time: 30.5 s

Path from Node-©@ to Node-16:

0->88->16

CPU times: user 30.9 s, sys:

Wall time: 31 s

Path from Node-@ to Node-16:

0->88->16

CPU times: user 31.4 s, sys:

Wall time: 31.5 s

Path from Node-0 to Node-16:

0->88->16

CPU times: user 31 s,

Wall time: 31 s

sys:

Sys:

v Traveling Salesman

https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

20 ms, total: 7.42 s

14

54

55

77

54 ms,

ms, total:

ms, total:

ms, total:

ms, total:

7.4 s

30.5 s

31 s

31.5 s

total: 31 s

Below is code to generate a fully connected graph on which to run the ant cycle algorithm. Each

edge is given a random 'visibility' or length between the Min and Max length constants (1-50

here)

1 import networkx as nx
2 import random
3 TRAIL_LAID = 10

4 PERSISTENCE

5

6 SEED = 4100

=0.5

7 MAX_LENGTH = 50

8 MIN_LENGTH

9

=1

10 random.seed(4100)

11

12 g = nx.generators.random_graphs.erdos_renyi_graph(1@, 1, seed=SEED)

12 of 25

6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

13

14

15 # generate edge visibilities (distances)
16 visibility = {}

17 for e in g.edges():

18 visibility[e] = random.randint(MIN_LENGTH,MAX_LENGTH)
19

20 print(qg)

21 print('Visbilities: ', visibility)

22

23 nx.draw(g)

Below is the code for running the ant colony optimization code. The Ant class is a simple object
that only holds a list of nodes an ant has visited, the current node the ant is on, and an
identifying number.

The ant cycle algorithm takes in a graph, number of ants to send out per cycle, a node to start
on, a dictionary of visibilities, and our changable parameters including ALPHA (how important
the trail is), BETA (how important visibility is), the maximum number of cycles to run through,
and the starting trail constant for each edge.

The algorithm first initializes everything, including setting a variable for the shortest tour so far,
time, number of cycles, and a trail intensity dictionary. The main function takes place in a loop
that continues until the maximum number of cycles has been reaches OR until stagnation
behavior is displayed. Ants are considered stagnating when all ants take the exact same route.
We have yet to have this happen.

Within each cvcle ants are sent out from the oriadin node. The next node to do to is selected bv

13 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

e = e~ e

calculating transition probabilities based on visibility and trail intensity. Each ant moves to a new
node and that node is stored in the nodes its visited so far. The ants continue until they have all
visited each node. Ants then lay down trail, intensities are updated according to the length of the
path each ant found, then all ants are reset and start again.

1 ALPHA = 2 ### Relative Importance of Trail

2 BETA = 2 ### Relative Importance of Visibility
3 MAX_CYCLES = 10000

4C =3

5

6

7 class Ant(object):

8 def __init__ (self, current_node, num):

9 self.tabu_list = [current_node]

10 self.current_node = current_node

11 self.num = num

12

13 def _str__ (self):

14 return 'Ant ' + str(self.num)

15

16 def ant_cycle_algo(g, m, start_node, visibility, ALPHA=ALPHA, BETA=BETA, MAX_
17 v

18 Parameters:
19 g: graph

20 m: number of ants
21 start_node: start node
22 LI B |

23 # Initialize

24 shortest_tour = None

25 shortest_tour_len = None

26 time = 0

27 cycles = 0

28 trail_intensity = {}

29 trail_intensity[time] = {}

30 for edge in g.edges:

31 trail_intensity[time] [edge] = C
32

33 ants_per_node = {}

34 ants_per_node[time] = {}

35 for node in g.nodes:

36 ants_per_node[time] [node] = 0
37

38 stagnating = False

39 while cycles < MAX_CYCLES and not stagnating:

40 # Set up ants and tabu lists
41 ants = []

42 for i in range(m):

43 ant = Ant(start_node, i)

14 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

44 ants.append(ant)

45 ants_per_node[time] [@] += 1

46

47 # Calculate probabilities and move each ant

48 tabu_index = 0

49 while tabu_index < len(g.nodes) - 1:

50 tabu_index += 1

51 for ant in ants:

52

53 # Caluclate Transition Probs

54 transition_probs = {}

55 1 = ant.current_node

56

57 for edge in g.edges:

58 if (edge[@] == i or edge[l] == i) and (edge[l] not in ant.tabu_lisH
59 numerator = (trail_intensity[time][edge] ** ALPHA) * (visibility
60 denom = 0

61 for k in filter(lambda x: x not in ant.tabu_list, g.edges):
62 denom += (trail_intensity[time][edge] ** ALPHA) * (visibility/[e
63 if denom ==

64 transition_probs[edge] = 0

65 else:

66 transition_probs[edge] = numerator / denom
67 else:

68 transition_probs[edge] = @

69

70

71 # Move Ant

72 #print(transition_probs)

73 picked_edge = random.choices(list(transition_probs.keys()), list(trar
74 picked_node = picked_edge[@][1]

75 if picked_edge[@][1] == ant.current_node:

76 picked_node = picked_edge[0@][0]

77 ant.current_node = picked_node

78 ant.tabu_list.append(picked_node)

79 ants_per_node[time] [picked_node] += 1

80

81 # Find shortest tour and update

82 tour_lengths = {}

83 for ant in ants:

84 #print(ant.tabu_list)

85 length = @

86 for i, j in zip(ant.tabu_list, ant.tabu_list[1:]):
87 first = i

88 second = j

89 ifi>j:

90 first = j

91 second = i

92 length += visibility[(first,second)]

93 tour_lengths[ant] = length

a4 <shnrtect tour Ten = min(li<t(tonr lennth< valiie<()Y))

15 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

- R VR VLR P I I N i UL R R N A]

95 shortest_tour = min(list(tour_lengths.keys()), key=(lambda k: tour_lengtt
96

97 # Find change in intensities

98 total_intensity_change = {}

99 for edge in g.edges():

100 total_intensity_change[edge] = 0

101

102 for edge in g.edges():

103 for ant in ants:

104 if edge in zip(ant.tabu_list, ant.tabu_list[1:]):

105 total_intensity_change[edge] += TRAIL_LAID / tour_lengths[ant]
106

107 # Update intensities at new time

108 trail_intensity[time + len(g.nodes)] = {}

109 for edge in g.edges():

110 trail_intensity[time + len(g.nodes)][edge] = (PERSISTENCE*trail_intens:
111

112 ants_per_node[time+len(g.nodes)] = {}

113 for node in g.nodes():

114 ants_per_node[time+len(g.nodes)][node] = @

115

116 time += len(g.nodes)

117 cycles +=1

118

119 stagnating = all(x.tabu_list == ants[@].tabu_list for x in ants)
120 if stagnating:

121 print("Stagnating on cycle " + cycle)

122

123 for ant in ants:

124 ant.tabu_list = []

125

126 print(shortest_tour)

127 print(shortest_tour_len)

128 return trail_intensity, shortest_tour, shortest_tour_len
129

1 intensities, shortest_tour, shortest_tour_len = ant_cycle_algo(g, 10, @, visil
(e, 2, 8, 1, 7, 9, 6, 4, 3, 5]

232

1 print(intensities[10])
2 print(shortest_tour)
3 print(shortest_tour_len)

{(0, 1): 1.5355871886120998, (@, 2): 1.5, (@, 3): 1.5458715596330275, (0, 4):

(e, 2, 8,1, 7, 9, 6, 4, 3, 5]
232

16 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab

17 of 25

v Visualization

Below is code for visualizing the updating of trail intensity on each edge in the graph. Each
frame takes place over a single cycle and using the networkx and matplotlib libraries we are able
to animate the change over time. The visualization below shows the first ten cycles of graph g.

1 import matplotlib.pyplot as plt

2 import networkx as nx

3 import numpy as np

4 import matplotlib.animation as animation

5

6 T_PER_FRAME = 10

7

8 labels = {@0: '©@', 1: '1', 2:'2', 3: '3', 4:'4', 5: '5', 6:'6', 7: '7', 8: '8'
9
10 fig, ax = plt.subplots(figsize=(12,12))
11 my_pos = nx.spring_layout(g, seed = 100)
12
13
14 def update(num):
15
16 edge_labels = intensities[list(intensities.keys())[num * T_PER_FRAME]]
17
18 for key in edge_labels.keys():
19 edge_labels[key] = float("%.2f" % float(edge_labels[key]))
20
21 ax.clear
22 nx.draw(g, pos=my_pos, node_size=500, labels=labels, with_labels=True, ax=a:
23 nx.draw_networkx_edge_labels(g, pos=my_pos, edge_labels=edge_labels, ax=ax)
24
25 ax.set_title("Shortest Tour: " + str(shortest_tour) + " | Length of Tour: "
26 ax.set_xticks([])
27 ax.set_yticks([])
28
29 ani = animation.FuncAnimation(fig, update, frames=10, interval=1000, repeat=T:
30
31 from IPython.display import HTML
32 HTML (ani.to_html5_video())

6/10/25, 4:14 PM

https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

Below is code to visualize on the shortest path found on the graph. All edges except those in the
shortest path found are removed. We use this to generate static images and also visualize and
animate the edge intensities for just the shortest path found later on

18 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

1 # Visualize shortest path
2 def viz_shortest_tour(g, tour):
3 tour_edges = list(zip(tour, tour[1l:]))

4 print(tour_edges)

5 labels = {0: '©@', 1: '1', 2:'2', 3: '3', 4:'4', 5: '5', 6:'6"', 7: '7"', 8: 't
6

7 new_graph = g.copy()

8

9 for edge in new_graph.edges():

10 if edge not in tour_edges and (edge[l], edge[@]) not in tour_edges:
11 new_graph.remove_edge(*edge)

12

13 my_pos = nx.spring_layout(g, seed = 100)

14

15

16 print(new_graph.edges())

17 nx.draw(new_graph, pos=my_pos, node_size=500, labels=labels, with_labels=Tri
18

19 return new_graph

20

21

22

v Parameter Testing

The main parameters that we tested changing are the number of ants, as well as the ALPHA and
BETA parameters. We did no statistical testing to determine significant changes, so it is unsure
how accurate these results really are.

1 intensities, shortest_tour, shortest_tour_len = ant_cycle_algo(g, 10, @, visil
(6, 5, 2, 4, 7, 8, 1, 9, 3, 6]

205

1 viz_shortest_tour(g, [@, 5, 2, 4, 7, 8, 1, 9, 3, 6])

19 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

Below is testing 20 ants vs 10. A shorter path was found in 10,000 cycles

1 intensities, shortest_tour, shortest_tour_len = ant_cycle_algo(g, 20, @, visil
[e, 7, 8, 5,6, 9,1, 2, 4, 3]
186

1 viz_shortest_tour(g, shortest_tour)

The code below tests 50 ants. A shorter path was found than with 10 ants, but its a longer path
than 20. It is unclear whether this is actually due to the number of ants or different decision
making. It might make sense that too many ants would make results worse since there are more
ants to randomly take less efficient paths and lay down trail intensity.

1 intensities, shortest_tour, shortest_tour_len = ant_cycle_algo(g, 50, @, visit

[OI 8I 2l 4’ 6I 3' 9l 1’ 7I 5]
192

20 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

1 viz_shortest_tour(g, shortest_tour)

Below is code for testing a higher alpha. This change found a longer path than the initial tests.

1 intensities, shortest_tour, shortest_tour_len = ant_cycle_algo(g, 10, @, visit

(e, 9, 6, 3, 8,1, 7, 2, 5, 4]
225

The two snippets below test a higher beta value. Both are lower than the initial test but it is
unclear whether this is because of the larger beta value or because of the random decisions
being made by ants.

1 intensities, shortest_tour, shortest_tour_len = ant_cycle_algo(g, 10, @, visit

[0I 6' 3l 4’ 7I 8' 5l 2’ 9’ 1]
185

1 intensities, shortest_tour, shortest_tour_len ant_cycle_algo(g, 10, @, visit

[0I 8I 7l 4-l 2' 1' 9l 3[6I 5]
200

1 new_g = viz_shortest_tour(g, shortest_tour)

21 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

The code below generates an animation for the higher beta test that shows the change in edge
intensity on only the ultimate shortest path. The animation covers the first 1,000 cycles of the
optimization process.

1 import matplotlib.pyplot as plt

2 import networkx as nx

3 import numpy as np

4 import matplotlib.animation as animation

5

6 T_PER_FRAME = 10

7

8 labels = {@: '©', 1: '1', 2:'2', 3: '3', 4:'4', 5: '5', 6:'6"', 7: '7', 8: '8'
9

10 fig, ax = plt.subplots(figsize=(12,12))

11 my_pos = nx.spring_layout(g, seed = 100)

12

13

14 def update(num):

15

16 edge_labels = intensities[list(intensities.keys())[num * T_PER_FRAME]]
17 new_edge_labels = {}

18 for edge in edge_labels.keys():

19 if edge in new_g.edges():
20 new_edge_labels[edge] = edge_labels[edge]
21

22 for key in edge_labels.keys():

23 edge_labels[key] = float("%.2f" % float(edge_labels[key]))

24

25 ax.clear

26 nx.draw(new_g, pos=my_pos, node_size=500, labels=labels, with_labels=True, :
27 nx.draw_networkx_edge_labels(new_g, pos=my_pos, edge_labels=new_edge_labels.

22 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

28

29 ax.set_title("Shortest Tour: " + str(shortest_tour) + " | Length of Tour: "
30 ax.set_xticks([])

31 ax.set_yticks([])

32

33 ani = animation.FuncAnimation(fig, update, frames=100, interval=1000, repeat="
34

35 from IPython.display import HTML

36 HTML (ani.to_html5_video())

23 of 25 6/10/25, 4:14 PM

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

Potential Extensions

If we were to put more work into this project the following would be the best areas to do so:

1. Testing different trail laying functions. The equation we settled on for this process involved
ants laying down trail after completing an entire tour. Other potential solutions include the
ant-density algorithm which would have the ant lay down a specified amount of trail every
time it crossed an edge as well as the ant-quantity algorithm which would have the ant lay
down an amount of trail that is inversely proportional to the visibility every time it crossed
an edge.

2. Another addition that could be made to our algorithm is the rule that once an edge drops
below a specified trail intensity, that edge is removed from the graph all together. This
would ensure that time and energy is not wasted on negligible edges in the graph.

3. Another extension would be to attempt to abstract the algorithm over multiple types of
problems. For example: we had two main problems that we applied it towards - shortest
path and TSP. It may be possible to create a single version of the code that could be
applied more easily towards both problems with significantly less duplication.

4. As an extension to #3 there is the consideration of additional problems. Graphs are a very
broad subject which has numerous other problems found within it. For example it can be
applied towards classication as shown in this paper https://ieeexplore.ieee.org/abstract/
document/4336122.

5. One other area of potential exploration and expansion would be in a more formal aspect. It
could be useful to analyze the time complexity of our implementations as well as their
relative probabilities towards obtaining the optimal (or an optimal) solution.

Works Cited

24 of 25 6/10/25, 4:14 PM

https://www.google.com/url?q=https%3A%2F%2Fieeexplore.ieee.org%2Fabstract%2Fdocument%2F4336122
https://www.google.com/url?q=https%3A%2F%2Fieeexplore.ieee.org%2Fabstract%2Fdocument%2F4336122
https://www.google.com/url?q=https%3A%2F%2Fieeexplore.ieee.org%2Fabstract%2Fdocument%2F4336122
https://www.google.com/url?q=https%3A%2F%2Fieeexplore.ieee.org%2Fabstract%2Fdocument%2F4336122

CS 4100 Final Project.ipynb - Colab https://colab.research.google.com/drive/1r-NGFsgaqcvwIW...

M. Dorigo, V. Maniezzo, et A. Colorni, Ant system: optimization by a colony of cooperating
agents, IEEE Transactions on Systems, Man, and Cybernetics--Part B, volume 26, numéro 1,
pages 29-41, 1996.

http://www.cs.unibo.it/babaoglu/courses/cas05-06/tutorials/Ant_Colony_Optimization.pdf

25 of 25 6/10/25, 4:14 PM

https://www.google.com/url?q=http%3A%2F%2Fwww.cs.unibo.it%2Fbabaoglu%2Fcourses%2Fcas05-06%2Ftutorials%2FAnt_Colony_Optimization.pdf
https://www.google.com/url?q=http%3A%2F%2Fwww.cs.unibo.it%2Fbabaoglu%2Fcourses%2Fcas05-06%2Ftutorials%2FAnt_Colony_Optimization.pdf

