

THE AIR POLLUTION PROJECT

Devices Team

The Sensor Device

- Sensors can measure:
 - \circ TVOC gases, CO₂
 - Particulate matter (PM)
- Displays levels of each type of pollution (LEDs, LCD screen)
- No WiFi capability without external module
 - decided Raspberry Pi was best for communication
 - Needed to couple time with the sensor readings.
 - Needed to reliably post and store data
- Device sends every reading to store in the database

What We Measure

Pollution Type	Units	Description	Source
C02	ppm	Carbon Dioxide.	Smoke, Emission
Volatile Organic Compounds (VOCs)	ppb	A group of gases or airborne liquids that can be toxic.	Cigarettes, Paints, Cleaning products
PM1.0	µg/m3	Particles < 1 micrometer in diameter. Small enough to enter bloodstream.	Wood smoke, tobacco smoke, Emission
PM2.5	µg/m3	Particles < 2.5 micrometers in diameter. Small enough to enter the lungs.	Bacteria, Fungi, Emissions
PM10	µg/m3	Particles < 10 micrometers in diameter. Large enough to be caught by our nose hair and mucus.	Smoke, Soil, Dust, Pollen

Gas Pollutants	Safe level (Typical indoor/outdoor levels)	Potential Health Risk (May experience dizziness, headache, and other symptoms)	Danger level (Long term exposure can lead to permanent health damage)
CO ₂ (ppm)	400-1000	1000 - 5000	> 5000
Volatile Organic Compounds (ppb)	0-250	250-2000	> 2000

PM Pollutants	Safe level (Typical indoor/outdoor levels)	Unhealthy (May experience dizziness, headache, and other symptoms)	Hazardous level (Long term exposure can lead to permanent health damage)
PM1.0 (µg/m3)			
PM2.5 (µg/m3)	< 12	12 - 35	35 - 50
PM10 (µg/m3)	< 50	50 - 150	< 150

Software Design

Device In Action

Sensor startup from bash to python

Gas sensor reaction, readings, LCD display and averaged reading

Database Team

Storage Strategy

- Database is stored by using MongoDB through Amazon EC2 instance
- Users Database
 - Stores information about users and sensors they own
- Sensors Database
 - <u>sensorInfo collection:</u> stores information about sensors and the email of their owner
 - <u>sensorReadings collection:</u> stores information about various pollutant readings, when they were taken, and what sensor serial number they came from

Archiving Data

UserService

- User's registration
- Edits information
- Delete account
- Get all owned sensors' information

SensorService

- Sensor registration
- Add sensor readings
- Edit sensor's information
- Delete sensor

Data Extraction to S3

- Automated data export from MongoDB database to Amazon
 S3 bucket via running a script with mongodump
- Data can be retrieved by the ESRI team by downloading the individual objects of the bucket
- Old data automatically deleted off database to make up space for the new data at client specified intervals

Esri Team

What We Do

- Request data from S3 database server
- Using said data we utilize the ESRI platform to create a visual representation of the data
- The data representation is automatically updated every month as new sensor data is received from the database team through the S3 database with backend code

Dashboard Capabilities

Jul 29

Dashboard Showcase

Sensor Information Dashboard

Select a dat

No date selected

https://nu.maps.arcgis.com/apps/dashboards/6187043fabb5425c884b694333ca444e

Platforms Team

WEBSITE DEMO:

UI overview and a typical user session